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INTRODUCTION

Expository books on the theory of Lie groups generally confine
themselves to the local aspeet of the theory. This limitation was
probably necessary as long ag gencral topology was not yet sufficiently
well elaborated to provide a solid base for a theory in the large. These
days are now passed, and we have thought that it would be useful to
have a systematic treatment of the theory from a global point of view.
The present volume introduces the main basic principles which goverd ™\
the theory of Lie groups. A

A Lie group is at the same time a group, a topological spage\'a}r& a
manifold: it has thercfore three kinds of “structures,” whieh are
interrclated with each other. The elementary propertiest of\abstract
groups are by now sufficiently well known to the generad toathematical
public to make it unnecessary for such a book as thifone to eontain a
purely group-theoretic chapter. The theory of tdpologieal groups,
however, has been included and is treated in Olipter II.  The great-
est part of this chapter is concerned with thg'theory of covering spaces
and groups, which is developed indepgn’dehtly from the theory of
paths. Chapter T1I is concerned with'thé theory of {(analytic) mani-
folds (independently of the notionff group). Our definition of a
manifold is inspired by the definitien of a Riemann suriace given by
H. Weyl in his book “Die Ldde der Riemannschen Flache”; it has,
compared with the deﬁnitiggfby overlapping system of coordinates, the
advantage of being intMgsic. The theory of involutive systems of
differential equations Oh a manifold is {reated not only from the local
point of view but ,a.lso’frl the large. In order to achieve this, a defini-
tion of the subpranifolds of a manifold is given according to which a
submanifold\is;"rmt necessarily a topological subspace of the mapifold
in which it(isimbedded.

The.Jiotions of topological group and manifold are eombined
to ethis.r\'in Chapter IV to give the notions of analytic group and Lie
grotp! An analytic group is a topological group whieh is given «
priori as a manifold; a Lie group (at least when it is eonnected) is 2
topological group which can be endowed with a structure of manifold
in such a way that it becomes an analytic group. Itis shown that, if
this is possible, the manifold-structure in guestion is uniquely deter-
mined, so that connected Lie groups and analytic groups arc in reality
the same things defined in different ways. We shall sec however in
the second volume that the difference becomes a real one when complex
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viii INTRODUCTION

analytic groups are considered instoad of the real ones which are
treated here.

Chapter V contains an exposition of the theory of exterior differen-
tial forms of Cartan which plays an essential role in the geneoral
theory of Lie groups, as well in its topological as in its differential
geometric aspects. This theory leads in particular to the construction
of the invariant integral on a Lie group. In spite of the fact that this
invariant integration can be defined on arbitrary locally compact
groups, we have thought that it is more in the spirit of a treatise on Lie
groups to derive it from the existence of left invariant différential
forms. O\

Chapter VI is concerned with the general propcrt-i.es[ Of compact
Lie groups. 'The fundamental fact is of course containedin the state-
ment of Peter-Weyl’s theorem which guara,ntees"ﬁlié existence of
faithful linear representations. We have alsom'qmluded a proof of
the generalization by Tannaka of the Pontrjagin duality theorem. A
slight modification of the original proof of\Fannaks shows that a
compact Lie group may be considered as he set of real points of an
algebraic variety in a ecomplex affine spa\:e, the whole variety being
itself a Lie group on which complex dobrdinates can be introduced.

The second volume of this bookynow in preparation, will be mainly
concerned with the theory and classification of semi-simple Lie Groups.

In preparing this book, Lhave received many valuable stuggestions
from several of my friends, in particular from Warren Ambrose,
Gerhardt Hoehschild, pe}ane Montgomery and Hsiao Fi Tuan. Iwas
helped in reading th Rroofs by John Coleman and Norman Hamilton,
I have also received" precious adviee from Professor H. Weyl and
Professor 8. Le;fschetz. To all of them I am glad to express here my
deep gra.titud\e,g

4 \‘.
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Some Notations Used in This Book

1. We denote by ¢ the empty set, by {a} the set composed of the
single clement a.
I£ f is 2 mapping of a set 4 into a set B, and if X is a sub-set of B,
-1

we denote by f {X) the set of the elements ced such that fla)eX. Ifg
is & mapping of B into a third set C, we denote by g o f the mapping
which assigns to every aed the element g(f(a)). ~

We use the signs v, 7 to represent respectively the intebsection
and the union of sets. If E,is a collection of sets, the 1nd0:>:~o: running
over a set A, we denote by Uaa E. the union of all sbtd E, and by
(Naea E. their intersection. We denote by &y the Kfone(,ker symbol,
equal to 1if ¢ = jand to 03 7 = §.

II. If & 1s & group, we call “nentral demuﬁ)’ the element « of G
such that e¢ = ¢ {for every veli.

We suy that a sub-group H of (s “dz,sth\gulshed” if the eonditions
aelf, reH imply var1eH, \

I ¢ = {(ay) represents 2 matrlx, i:he symbol D E[ stands for the
determinant of the matrix; Spo stands for the trace of the matrix.

I, N are vector 8paces: Wver the same field K, we call produc
of M and N, and denote bR W X N, the set of the pairs (e, f) with
e, fet, this set beingAu¥rned in a vector space by the conventions

(e, CHYe, ) = (e + &, f + 1)
ale, f) = (ae, af) for aeK.

111, Topologyy We call topalogical spaces only the spaces in which
Hausdorf se:pa’yrzi-t-ion axiom is satisfied.

A neighbourhood of a point p in space B is understood to be a set
N suck\"hat there exists an open set U such that p8U ( N; N need
not Be'open itself,

The adherence 4 of a set 4 in a topological space is the set of

M$hose pomts p such that every neighbourhood of p meets 4. Every

point of A is said to be adhorent to A, We shall make use of the
possibility of defining the topology in a space by the operation 4 — A
of adhereuce (ef. Alexandroff-Hopf, Topologie, Kap. 1).

Intervals. If o and b are real numbers such that a < b, we denote
by la, o] the open interval of extremities & and b, We set lg, bl =
la, B\ {b}, [a, Bl = Ja, B[\ {a}, [a, B] = J&, B[ fa} s 1B}



CHAPTER 1
The Classical Linear Groups

Summary. Chapter I introduces the classical linear groups whose study
is one of the main objects of Lie group theory. The unitary and orthogonal
groups are defined in §1, together with a series of other groups. Their funda-
mental property of being compaet is established.

Section IT is concerned with the study of the exponential of a malzes
The property for a matrix of heing orthogonal or unitary iz defined by'a
system of non-linear relationships between its coefficients; the exponéntial
mapping givesa parametric representation of the set of unitary (or orthajenal)
matrices by matrices whose coefficients satisfy [inear relations (CH. Proposi-
tion 5, §II, p. 8). The reader may ohserve that the spaces A/%\M*, M5,
M# which are introduced on p. 8 all contain YX — XL ¢hencver they
contain X and ¥. Although we could bave given here g slementary expla-
nation of this faet, we have not done so, on account\of the fact that the
full importance of this result can only be grasped mugelnlater (in Chapter 1vy.
In the cases of the orthogonal and unitary group ¢the linearization can also
be accomplished by the Cayley parametrization ’E,}fhich we have not intro-
duecd); however, the exponential mapping is 'mbre advantageous [rom our
point of view because it preserves some prgpé;ties of the ordinary exponential
function (Cf. Proposition 3, §IV, p. 13)ay ™

Seetions ITI and IV are preliminaxydto the result which will be proved
in Secction V (Proposition 1, p. 14). Hermitian matrices are defined in
terms of the unitary geometry ind complex veetor spuace {unitary geometry
is defined by the notion of heying ian product of two vectors, just as euclidean
geometry can be defined ili{\wins of the sealar product)., Proposition 2, §I11,
p. 10 shows that the upitary matrices are the isometric fransformations of
a unitary geometry, /o™

The propositionathirch asserts that the full lipear group can be decomposed
topologically into the product of the unitary group and the space of positive
definite hermitian matrices (Proposition 1, §V, p. 14) Is the prototype of the
theorems vy%"aﬂow us to derive topological properties of gencral Lie groups
from the sproperties of compact groups. A similar decomposition is given
for the/templex orthogonal group {Proposition 2, §V, p. 15},

'SEe,ti‘ons VI and VII are preliminary to the definition of the symplectic
groups. The symplectic group is defined to be the group of isometric trans-
formations of & symplectic geometry (Definition 1, §VII, p. 20). In §IX, we
construct a representation of Sp(n) by complex matrices of degree 2n. The
consideration of the conditions which the matrices of this representation
must satisfy leads to the introduction of a new group, the complex gymplectic
group Sp(n, ¢}, Itcan be scen eagily that Sp(n, €} stands in the same rela-
tion to Sp(n) as GL(n, €} to Utn) or as f¥n, C} to O(n). A proposition
of the type of Proposition 1, §V, p. 14 could be derived without much diffi-
culty for Sp(n, €}, However, we have not found it necessary to state this

1



2 THE CLASSICAL LINEAR GROUPS [Crap, 1

proposition, which is confained as a speeial cese of a theorem proved latey
{(Corollary to Theorem 3, Chapter VI, §XII, p. 21 1}.

SI. THE FULL LINEAR GROUP AND SOME OF ITS SUBGROTURS

The n-dimensional complex cartesian space C* may be considered
as a vector space of dimension # over the field ¢’ of eomplex numbers,
Lot e; be the element of O whose ¢-th coordinate ig I and whose other
coordinates are §, The elements e;, - - - | e, form a base of (»
over €, L

A linear endomorphism « of (% is determined when the aements
ae; = X7 4;€; arc given. There corresponds to this edomorphism
a matrix (a;) of degree n ; we shull denote thig matpxXsby the same
letter a as the endomorphism itgelf, Conversely,"'isﬁ' any matrix of
degree n with complex coefficients, there corresponds an endomorphism
of C R

Let o and 8 be two endomorphisms of €%’ and let (a;) and (B
be the corresponding matrices, Then o 0848 again an endom orphism,

v

whose matrix () is the product of I'.he,\ fatrices (ai)) and (b,); e,
(1) G = IPNah

We shall denote by () thelset of all matrices of degree n with
coefficients in . ¢ (a,-,-)efm,;(bj, we st bivt_na = g and we associgte
with the matrix (a;) the pelit of coordinates by, - - - s b in O We
obtain in this way g OHE~to-0ne correspondence hetween M, {C) and
C*. Since ¢ is 2 (topological space, we can define a topology in
M.(C) by the requitement that oyy correspondence shall be g homeo-
morphism betwebn M,u(C) and 0=
Let § be,dny topological Space, and let o be 5 mapping of & into
ML (. If\'zs@, let a;;(8) be the coefficients of the matrix ¢ff), It is
clear that s will be continuous if and only if each funetion a;(t) is
contimjets.
A, follows immediately from this remark and from the formulas
,..\(:11}’:13}1&13 the product gr of two matrices 7, 7 I8 a continuons function
\df the pair (o, 7), cousidered ag 5 point of the gpace ML(C) X N,(C).
If o = {2:), we shall dencte by ‘a the transpose of &, i.e. the matrix
(ai;), with % = @z Wo ghal] denote by & -the complex conjugate
of @, i.e. the maftrix & = (@). Tt is clear that the mappings a — ‘e,
¢ — & are homeomorphisms of order 2 of Ma(C) with itself. If a and
# are any two matrices, we haye

YaB) = e B = &

Tl



811 THE FULL LINEAR GROCUP 3

A matrix o will be called regular if it has an inverse, i.e., if there
exists a matrix ¢! such that eo™t = o—'c = ¢, where ¢ is the unit
matrix of degree n. A necessary and sufficient condition for a matrix o
to be regular is that its determinant El be #= 0.

If an endomorphism ¢ of C* maps C* onto itself (and not onto
some subspace of lower dimension), the corresponding matrix ¢ is
regular and ¢ has a reciprocal endomorphism ¢~

if ¢ is & regular matrix, we have

o) = (o)t =)
If « and r are regular matrices, o is also regular and we have O\
. N\

Ny

(gr)~t = 7%

It follows that the regular matrices form a group 5}‘1%5” respect
to the operation of multiplication. R

Definition 1. The group of all regular mafrices ‘of degree n with
complex coefficients is called the general linear growpy We shall denole
it by GL{n, O). <;§

Since the determinant of a matrix is ob¥{dusly a continuous fune-
tion of the matrix, GL{n, C) is an open subset of 9M,(C). We may
consider the elements of GL{(n, ) as;.’pbints of a topological space,
which is a subspace of 9L(C). N\

If o = (@i} is a regular mat;ixlf the coefficients by; of ¢! are given

by expressions of the form ¢

\<b.: = Ayl

where the Ay's are polynomials in the coefficients of o. It follows
that the mappin 6 ot of GL{n, €') onto itself is continuous. Since
this ma.pping'c\ifi}éides with its reciprocal mapping, it is a homeo-
morphism Q.Qérder 2 of GL(n, ") with itself.

The nia;ppings s — & and ¢ —» io are homeomorphisms of GL(#, 8]
withmitsélf. The fivst but not the second is also an automorphism of
thelgroup GL{n, C}.

If eeGL(n, (), we ghall denote by ¢* the matrix defined by the
formula

0'* = Io.—l
We have
(ar)* = o¥*r* (a*)! = (c—)*
Hence, the mappings — o*isa homeomorphism and an automorphism
of order 2 of GL{(n, C}.



4 THE CLASSICAL LINEAR GROUPS [Cuar. 1

Definition 2. A mairiz o s soid o be orthogonal of v =& = o*.
The set of all orthogonal matrices of degree n will be denoted by O(n).
If only ¢ = ¥, o 18 said o be complex orthogonal; the set of these matrices
will be denoted by O(n, C).  If only & = o*, o 78 said to be unitary. The
set of all unitary mairices will be denoted by U(n).

Sinee the mappings ¢ — & and ¢ —o* are continuous, the sets
O(n), O(n, €} and U{n) are closed subsets of GL(n, C). Because
these mappings are automorphisms, O(n), O(n, C) and U(n) are sub-
groups of GL(n, C). We have clearly

0{n) = OH{n, C) ™ U(n).

oA
Definition 3. We shall say that the matriz o 1s real ifxii? toeficients
are real, le. if o = &, The set of all real matrices gf dégree n will be
denoted by M.(R). The set M(R) DCL(n, Chuwill be denoted by
GL(n, R). AL
Thercfore, we have also \4

O(n) =GL{n, B) O, C)

The deierminant of the product of &wo matrices being the product
of the deferminants of these ma;t{'ibeé, it follows that the matrices of
determinant 1 form a subgroupref GL(n, C).

Definition 4, The group ofall matrices of determinant 1 in GL{(n, C)
is called the special lincar group. This group is denoted by SL{(n, C).
We set SL(n, B) = SML(\n, Cy N GL(n, B); 80(n) = SL{n, €) M O(n);
SU(n) = SL{n, C) sV (n).

It is clear tha%\\SL(n, ), SL{n, R), SO(n), SU{n) are subgroups
and cloged subskts of GL(n, C). They may be considered as subspaces
of GL(n, ()N :

Theorémi’l. The spaces U(n), O(n), SU(n) and 80(n) are eompact.

SiBQ't“:\'O(n), STU(n) and SO(n) are closed subscts of U(n), it is
suffitient to prove that U(n) is compact. A matrix ¢ is unitary if
atd only if %¢5 = ¢, where e is the unit matrix (in fact, this condition

\”"{in:iplies that ¢ ig regular and that¢* = #). If ¢ = (ay), the equation
tyg = ¢is equivalent to the conditions

Q!

N

Zi@50m = Bg

Since the left sides of these equations are continuous functions
of o, U(n) is not only a closed subset of GL(n, C) but also of M.(C).
Moreover, the conditions Zjauds = 1 imply las| € 11 €4, § € n).
It follows that the coefficients of a matrix ¢eU(n) are bounded. If we
take into account the homeomorphism established between IM.(C)



§IT) THE EXPONENTIAL OF A MATREX 5

and O, we see that U(n) is homeomorphic to a closed bounded subset
of C°'. Theorem 1 is thereby proved.

§I1, THE EXPONENTIAL OF A MATRIX

Let o be any matrix of degree n, and let u be an upper bound
for the absolute values of the cocfficients zi(a) of a. Let 2P (a) be
the coefficients of a”(0 € p < «; we set o® = € = the unit matrix).
We assert that [¢{P(a)| € (nu)7. This is true for p = 0. Assume
that our inequality holds for some integer p 2 0; then N\

(@) = |Zaf (@] < newpe = ot ()

which proves that the inequality holds for p + L. (..}‘

. 1 .
It follows that cach of the n? series 23 71 o (aQ&converges uni-

formly on the set of all @ such that ERCHERRN B\ other words, the
2 k3 ¢ /
geries e _!_i‘l‘ —i—% + o 4 %—1 L ig'\a:]}vays convergent, and

uniformly so when o remains in a bounded Tegion of the set M. (C).

R . 1
Definition 1. We denote by exp¥ the sum of the sertes 2F ol ar.

The function exp e is thus déﬁﬁed and continuous on M.(C) and
maps M.(C) into itself. 4
Proposition 1. If¢ is”\regui’ar matriz of degree n, then
L
(exp (oarY) = o(exp a)o™!

In fact, w{iﬁave saPa~! = (par™")?, and hence exp (gac™) =

< 1 :"\’:_ | 1 -1 — @ 1 —1 — —
3 ol (crf@ly = Z¥g (Ef a*’) el=0 (Eg i a") ¢! = elexp a)e .

P;&fpi’:sition 9. Ifhy -+ -, Anarethe characteristic roots of , each
oeewrzing a number of times equal to its mulliplicity, the characteristic
rov#s of exp a are eXp My, © 7 5 €XP Ao

We shall prove this by induction on 7. It is obvious for n = 1,
because then a is a complex number. Now, assume that » > 1 and
that the proposition holds for matrices of degree n — 1.

Let )\, be a characteristic root of a; then there is an element a # 0
in O such that ea = Ma. Let e be the point whose coordinates are
1,0, - ,0 DBecause a = (1, there exists a regular matrix ¢ such
that ga = €1, Then cas'e; = ey in other words,
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where the *s indicate complex numbers and & is a matrix of degree
n — 1. We have

ANoF L * O
0 . O\
gals =1 . - a\ Tt
(@)
) (Qo:‘:
0 R

and therefore
exp M AN LY
0 8"
exp (sac™t) = { .\ (exp &)

N 0

H Xy - - -, A, are th:é;\cha.racteristic roots of &, those of w, which
are the same as those'of cas—!, are A1, Ay, © - ¢, M. The proposition
being true for mdtrices of degree n — 1, it follows that the character-
istic roots of B¥P/& are exp Az, + * + , exp A,, and those of exp (gar™)
are exp R1,:’;0i(p~}\2, * v, eXp A.. DBut these are also the character-
istic rogts)of s(exp a)e~! (Cf. Proposition 1) and hence of exp a.
Propqg}l}m 2 is thereby proved.
LCorollary 1. The determinant of the matriz exp o 15 exp Sp o
=\ JFhis follows at once from the facts that the trace and the deter-
finant of a matrix are respectively the sum and the product of the
characteristic roots.
Corollary 2. The exponential of any matriz is ¢ regular malriz.
Proposition 8. If a and 8 are permutable matrices (i.e. if af = fa)
then exp (o + 8) = (exp a){exp f).
Since « and 8 are permutable, we can expand (¢ + 8)® by the
binomial formula:
P af gk

1 P
}T{(“‘*‘ﬁ) 220}&(10__}6)!



$11) THE EXPONENTIAL OF A MATRIX 7

Therefore, for any integer P, we have

op (@ + B)7 o 8*
S (= “ﬁ) (= 5) + B

where Rp is the sum Zq.p of [k 8/, extended over all combinations
(k, ) such that max (k, I) > P, k 41 € 2P. The number of these
combinations of indices is P(P + 1). On the other hand, if 4 is an
upper bound for the coeflicients of @ and B, the absolute value of any
coefficient of o /k! g7/ is at most n{np)s/ kN nu) 1 € (npo) 22 (DY
where g is some number > 0. It follows that the coefficients of Rpdre
smaller than P(P + L)(nus)?"/P! in absolute value and that.Re ténds
to 0 as P increases indefinitely. The formula to be pijo\red 15 an
immediate consequence of this fact. A

Corollary. If ¢ is a real variable and « a fived mat\rm:, the mapping
{ —> exp la 15 a conitnuUoOUs homomorphism of the<additive group of real
numbers tnto GL{n, C). R

If « is any matrix, we have clearly \ O

exp (‘&) = ‘(exp a); exp = exp «
It follows from the Corollary to Egé’;ﬁésition 3 that we have also

exp (/= ;G)’ = (exp o)7L

Proposition 4. Thgreig;zksts a neighbourkood U of O in M, () which
is mapped topologica@ly\}nio a neighbourhood of e in GL(n, ) by the
mapping o — exp m\/

We represent g -matrix agiit,(C) by the point of C** whose coordi-
nates are t-h.e\B:Q\f{ﬁcicnts ri{a) of o (these cocfficients being arranged
in some fXxed order). From the uniiorm convergence of the series
2ra? /RN follows that the coefficients yi(e) of exp a are integral
analytie Tunctions Fyl - - zmlay, - ) of the coefficients of a. It
iclenr that the terms of degrees < % in the Maclaurin expansion of
Failt - jow, - ¢ 0) are 3+ T It follows immediately that the
Jacobian of the n? functions Fi; with respect to their n? arguments is
equal to 1 when z = 0(1 < k, 1 € n). By the theorem on implieit
functions, we know that the mapping of € into itself which assigns
to the point of coordinates zy the point of coordinates Fu(* + -+, %y
.+ ) maps topologically some neighbourhood of the origin onto &
neighbourhood of the point of coordinates g = &;. TProposition 4
follows immediately.
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Definition 2, A malriz « is said lo be skew symmetric if f 4 @ = 0,
skew hermition of ‘o + & = 0.

We shall denote by M* the set of skew symmetric matrices, hy
M the set of skew hermitian matrices, by M9 the set of matrices of
trace O and by M?® the set of rcal matrices.

Lemma 1. We can find a neighbourhood U of O in M,(C) which
satusfies the following conditions: 1) it is mapped topologicolly onto a
netghbourhood of e in GL(n, C) by the mapping a — exp «; 2) the trace
of any agU is smaller than 2 in absolute value; 3) the condilton asll
implies —agl, tasl/, aell. O\

Let Uy be a neighbourhood of ( which satisfies the ﬁ}‘&b and second
conditions; we dencte by —I7y the set of matrices \~a with ael/;,
and we define similarly ‘U, U1 The set U = [ (= Uy) 7 (U)
™ Uy satisfics the conditions of Lemma 1. "

Proposition 5. Let U be a neighbourhdgd™ey O +in WO which
salisfies the conditions of Lemma 1. TheJets Ms ™ U, Mt T2
MSONMRONG ) MET MR JS Q({ﬁ,u RO MO T MR S
YMPR NG, MU are mapped topdlolyically under the MApping a« —
exp « onto neighbourhoods of ¢ in thefollowing groups: SL(n, (), U{n)},

"

SU(n), GL(n, ), 8L(n, R), OnN30(n), Oln, ©).

We know that the nmp}gi’n@'a —*exXp « maps every subset of U
topologically. Tf aeMS, we have exp oe SL(n,C) by Corollary 1
to Proposition 2 abov@\MIf «gM®, we have Hlexp o) = exp (‘o) =
exp (—a) = (exp ¢}, which proves that exp « is complex orthogonal.
In a similar wa-}f,\w prove that, if a«gM*: then CXD & i3 unitary.
Conversely, if ekprag SL(n, (), o l/, the conditions exp (Sp «) = 1,
|Sp o < 2 ply Sp o = 0, whence agM5, If oxp a€0(n, ), acl/, we
have faeUN=ael and exp (‘a) = exp (—ea), whence ‘e = —o and
ag M e (wa similar way, we see that if «ell and exp a is unitary, then
asiﬂ;i'ff.\ If & is real, exp « is also real; conversely, if well is such that
e;cg.fris real, we have ¢xp o = exp & whence a = 7, Proposition 5

~follows immediately from these lacts,

The sets M%, M ME M3 Af h MEONMS, MR [ sh DRSS
M Me may all be considered as vector spaces over the field R
of real numbers; as such, their dimensions are 252 — 2, nt vt nt — 1,
n? — 1, nin — 1)/2, n(n — 1)/2and nin — 1) respectively. We have
therefore proved:

Proposition 6. In each of the groups GL(n, ), 8L(n, ©), U(n),
SU(n), GL(n, R), 8L(n, R), O(n), 80(n), O(n, C) there exists a neigh-
bourhood of the neutral element which is homeomorphic to an open set
in a real cartestan space of suitoble dimension. These dimensions are:
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2n? for GL(n, 0, 2n* — 2 for SL(n, C), n? for Uln), nt — 1 for SU(n}),
n? for GL(n, R), n* — 1 for SL(n, Ry, nin — 1)/2 for O(n) and SO(n),
n(n — 1) for Oln, C).

§III. HERMITIAN PRODUCT

As we have alveady observed, the space €™ may be considered as
a vector space of dimension n over C, with the base {ey -« + , €.}
introdaeed in §I, p. 2. In this section, we shall use the notafion
az (instead of za) for the produet of a vector a by a number z; this

notation will be preferable when we come to quaternions. N\
Definition 1. Leia = Z'ez and b = Zieay be vectors in C’{.\We
define their hermitian product a - b by 25 ™
a‘bh = E’I‘E;u; o"'}" .

We define the length of a fo be the number [lal] = (g'\-é)'* = (Z'zz)h
Woe see immediately that |[al| 2 0, and that [|al{{& U impliesa = 0.
The number a - b is, for a fixed, a linear fu'n\qt’ion of b;ic.

a - (bsty + bauz) = (- b)usdk (@ - bo)us
Tlowever, if b is fixed, a - b is nof 2 lin(;air: Function of a, for we have
bra =" b)
whence N
(a21 + a:ze} 7 = (ar- bz, + (a2 b)2:

Definition 2. 4 vecta?é is called a umit vector if |[a]| = 1. Two
vectors a and b are sard.to be othogonal if a-b = 0. A set of vectors
is said to be orthonorimul if every veclor of the set i8 @ unit vecior and any
two different vectinddf the sel are orthogonal.

Propositio)l,” Let ay, -+ -, an be m tinearly independent veclors.
Then theré dists an orthonormal set (b1, © , b} such that, for each k
1< kﬁ*?n  the sets {ay, =+, 8k} and {by - - , bz} span the same
subspr{ee';of .

~4¥e proceed by induction on m. Proposition 4 holds for m = 1;
ir}fa:ct., we have a; 5 0, and we may define by to be a|jail|~% Assume
that m > 1 and that Proposition 1 holds for systems of m — 1 vee-
tors. Then, we ean find vectors by, - * * b..: such that, for every
i< m— 1, the sets {a, - -+, &} and by = b:} span the
same subspace of C» Now let us consider the vector ¢ = &m —
S7lby(b; - 2.). Because an 18 linearly independent of 2, - - ',
am_1, ¢ does not lie in the space gpanned by an © * 7, AL We
define ba to be ¢|lel|~t.  Obviously, |[ball = 1 and (using the orthogo-
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nality of by, © - -, Broi)y
b - bi = (8w bx — an - bo)|le||7t =

which shows that b.. is orthogonal to by,  + ¢, bu_y. Then {by,
-, bl is an orthonormal set which spans the same space as
{ay, - - -, an}: Proposition 1 is proved for systems of m vectors,

Corollary 1. Awny vector subspace of C* has an orthonormal base,
Corollary 2. Any unit vector a of C™ belongs {o an orthonormal base
of C=, N

In fact, a may be taken as the first element of a base uf ¢ If we
apply to thlb base the construction of the proof of PI‘(}R{)‘-;I"GIOII 1, we
obtain an orthonormal base of C* whose first L‘l(‘ml,li’f;. 18a.

We shall now consider the matrices of degree a'as endomorphisms
of C*, in the way which was explained in §I. _{ &

Proposition 2. A necessary and sufficient\condition that @ matriz o
be unilary is that ||oa|| = ||al| for all agC™" This condition implies
that oa - ob = a - b for any fwo vectors agnd b in C».

First, let @ = (&) be any matrix YWe have ce; = 2;e,a;;, whence
@i = (we)) - & We have also faep2 Ziem:, whence ay = e - (fae;)
and (ce;) ' €; = e, (‘ae;). It fjcﬁ,lbws easily that

(1) (a8) 'b = a - (‘ab)

for any two vectors 8 £\Z;e;q;and b = Zjeb;
If ¢ is a unifary’/matrix, we have oca -ob = a - (‘seb) = a - b,
and, in pa,rticular,%‘ora|'|2 = ||al;%, whence ||cal| = ||a]|.
Conversely; assuming that this condition is satisfied for every a,
we have £\
L[ (ea + ob) - (s + ob) = (a -+ b) - (a + D)
Whenck\’u'
) oa-ob +oh-ca=a-b+b-a
{«%?,gpla-cing b by 4/ —1b, we have also
ca‘obh —sbrsa=a-b—b-a

whence sa-¢b = a-b = a-‘ggb, We have therefore a - (b — %ob)
= 0 for every a, whence b = %gsb (we may for instance take a =
b — ‘%ob). The formula b = ‘Fob being true for every b, ‘@e is the unit
matrix, which proves that ¢ is unitary.

Because the set {e;, - - <, e.} is orthonormal, it follows that
the set {oey, - - -, oe,] is orthonormal for every unitary . Con-
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verzely, let {an, = -, a,} be any orthonormal set; then there exists
a matrix ¢ = (ai;) such that se; = ai(l <4 € n) Bince

o8 " ¢ = Zidnthiy = & 8 = St

we sce that ¢ is unitary. In particular, we obtain

Proposition 8. If a is @ unt vector, there exisls @ unitary mairic o
such that o&, = a.

We shall say that a vector a = T.em; is real if its coordinates i,
Ty, © * ', Tn OI real. If a and b are real vectors, the number a -.Q
ig also real.

Proposition 4. A malrix o is orthogonal if and only fhpy two
following condilions are safisfied: 1) sa-ob = 2" b for any:\twd real
vectors a and b3 2) if a is any real vector, oa 15 also real. (‘f.’;’

These conditions are certainly satisfied if o iz offhbgonal, since
in that casc ¢ is unitary and real. Conversely, l‘et,\ﬁs assume that
the conditions are satisfied. Let a = e and B = Zen; be any
two complex veetors. Since ey © * ", s are; xedl vectors, we have

ca-ob = Z,Eylce-oe) = 2;@@,-(13; -e)=a-b

and hence ¢ is unitary. Since ¢ is algo real, it is orthegonal.

The process of orthonormalisgtion which was used in proving
Proposition 1, if applied to agystem of real vectors, leads to real
vectors. Hence: A

Coroliary 2a to Propofsi\fion 1. Any real unil vector belongs to an
orthonormal base of Ceomposed of real veetors.

[n the same waf that we proved Proposition 3, we derive:

Proposition 3¢/ If ais ¢ real wnit veclor, there exisls an orthogonal
matriz ¢ suq}i'ﬁm g€y = f.

§ §IV. HERMITIAK MATRICES

Définition 1. A matriz o is called hermitian if fa = &.

“The reader will observe that the mapping e — & is not an auto-
m8rphism of GL(n, C) and that the hermitian matrices do not form a
subgroup of GL(n, C).

Proposition 1. 4 matriz 18 hermitian if and only if ca - b = &~ ab
for any two veclors & and b in O™

In fact, if o is hermitian, the result follows immediately from
Formula (1), §I, p. 10 Conversely, if the condition ia satisfied,
and if b is any veetor in C?, we have a - ob = a-*ab for all asC™
whence ab = ‘ab and o = ‘a.
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Proposition 2. If a is a hermition malriz and o is unitary, coc™!
i8 agoin hermitian. Moreover, there exisis a unttary matric oo such
that ooaos! is @ diagonal matriz. If o 48 real, oo may be assumed to be
orthogonal.

The first part of the proposition follows at once from the fact that
Hoaer ') = Ho idle = ¢tale = gar 1 = cas .

We shall prove the sccond part by induction on the degree n
of the matrix . It is obvious for n = 1. Assume that » > 1 and
that cur assertion holds for matrices of degree n — 1. O

Let M be a characteristic root of @ Then there exisisca, vector
a, # 0 in C* such that ea; = May; multiplying a, by a palmber 0,
we may assume that [|a,|| = 1. Henee, there exists a unitary matrix o;
such that c.a; = e; (Propesition 3, §III, p. 11). A8ctien = qrao7’;
then e is hermitian and moreover we have «,e; =X@1. Suppose that
me; = Zeas (1€ 1< ). We have an = My = 0 (2 <7 € n);
since o is hermitian, we have ¢; = @ It feldows that A, is real and
that ay; = 0 (2 £ § € »). Knowing tha ‘A1 is real, we see that, if
a is real, we may assume a to be real {the coordinates of a; have to
satisfy a system of lincar equations with real coefficients); we may
therefore assume in thig case that o, is orthegonal (Proposition 3a,
§$11T, p. 11). NP

The matrix e has the form

&

\\ .
N °
where &t is a hermitian matrix of degree n — 1 and is real if o is real.
By bur induction assumption, there exists a unitary matrix §s of
‘degree n — 1 such that &~ is a diagonal matrix; if « is real, &:
may be assumed to be orthogonal. We denote by o2 the matrix
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which is obviously unitary. 1f o0 = o201, o0 is also a unitary matrix
and is orthogonal if « 18 veal. Since opaee ' is & diagonal matrix, we
qee that Proposition 2 holds for matrices of degree n. Moreover, our
proof contains the {following result:

Proposition 3. The characteristic roots of a hermition malriz are
real numbers.

We shall say that & vector a is an eigenvector of a matrix a ifaisa
unit vector and if ea = Ma, where A is a number; X is necessarily a
characteristic Toot of a. We shall say that a belongs to the root M
If « is a diagonal matrix, the vectors ey = * = €a are eigenvectors
of @, and conversely. Jfaisan eigenvector of @, and if ¢ is any pégnlar
matrix, ca is an eigenvector of sas—'. Hence, an equivalent ’I}}rmiﬂa-
tion of Proposition 2 is the following: (x'.';.

Proposition 4. If a is @ hermitian matriz, the Spabe O» has an
orthonormal base composed of elgenveciors of a. 'S

Definition 2. A hermifian mairiz a is called posit-ii'e (semi-definite)
if its characteristic rools are all 20; if none of th}a’c roots is equal fo 0,
o 48 called postiive definite. N\

Tf  is 4 hermitian matrix, exp o 1s alstbErmitian, because we have
t{exp &) = cxpla = exXp & = {exp a).f:'.l\{orcovizr, cach characteristic
root of exp e is of the form exp N, .}’ﬂiﬂfc ) is a characteristic root of o,
and hence real (Proposition 2, §IF p. 5). Tt follows that exp « isa
positive definite bermitian mdtrix.

Conversely, let 8 be any,\positive definite hermitian matrix. We
know that there exists #unitary matrix e such that, if we set a; = g€;
(1 € 7 € n), we haye Ba; = pid with pireal > 0 (1 S ¢ £ n). Weset
n = log p (1 € ©$x) and define o matrix a by eas = A& (1 £ 4 £ n).
We have o lafBpe Me;, which shows that ¢—las is a real diagonal
matrix, he cké;\liérmitian; then a = of{elas)e™! 18 hermitian. More-
over, wel Have (exp a)a: = (exp Aija; = pad(! < ¢ € n), whence
exp o =\: 5.

Aleassert furthermore that the representation of 3 as the exponen-
tish\o'f a bermitian matrix is unique. In fact, let o' be any hermitian
matrix such that exp of = 8. Tet 2’ = Zaa be any eigenvector of
a', belonging to a charscteristic Toot A" of . Then we have fa’
= {exp o’)a’ = (exp V)&’ = Sa:(pirs), which proves that zi = 0 if
7 oxp M. Let 4o be an index such that zi  0; then we have
i, = 6Xp N = exp M, whence A = X, since A and A, are both real.
On the other hand, we have ca’ = Zaile; log ps) = Na' = o'al.
Since o produces the same eficct as o on each of its eigenvectors, it
{ollows from Proposition 4 that o = o'. We have proved:

2N
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Proposition 5. The mapping « — exp « maps in a unwalent way
the set of all hermitian malrices onto the set of all positive definite hermatian
matrices.

This mapping is clearly continuous. We shall prove that it is
topological. Infact,let (81, =~ ,8p * - ) be a sequence of positive
definite hermitian matrices which converges to a positive definite
hermitian matrix 3. The characteristic polynomial of 8, converges
to the characteristic polynomial of 8; it follows that the characteristic

TOOtS w1y * ¢ 5 #mp Of Bp (arranged in a suitable order) convo}gc to
the characteristic Toots g, * * * , #a of 8. Since u > 0 (€2 € n),

the numbers log pi, remain bounded when p increasesindefinitely.
It follows that, if @, is the hermitian matrix such that'exp a, = 85,
the characteristic roots of a, remain bounded. AT or each p, there
oxists a unitary matrix o, such that ez 8, is a diagonal
matrix, whose diagonal coefficients are the sharacteristic roots of a,;
hence the cocfficients of §, remain bounded\as p increases indefinitely.
Since ¢, is unitary, any coefficient qf‘\£+-§)~ is €1 in absolute value.
Therefore the eoefficients of o, retmain bounded and the sequence

(oer, * * *, @p + * - ) belongs toya“bounded i.e. compact, subset of
MA(C). It follows that we caplextract from the scquence (e, + *
ap, © * * )} a subsequence hich converges to a matrix a. Since

ta, = &, we have also ‘g = & and « is hermitian. The exponential
mapping being continyails, exp « is the limit of & subsequence extracted
from (81, -+ * , Beg@) * ), whence exp @ = 8. But we know that
the repljesentatiqn\a' 8 as the exponential of a hermitian matrix is
unique; therefore’all convergent subsequences of the sequence (a,
oo ay, -ON™) have the same limit . It follows immediately that
lim., 9:{1—%?1. This proves that the mapping @ —exp e is topological.

A hermitian matrix « = {(a;) is obviously determined by the
an\*:xg‘]edge of the coeflicients @y (which must be real) and ay for
i< J (which may be arbitrary complex numbers). Hence the set
oF all hermitian matrices is homcomorphic to R* X C**=2/% Le. also
to %, 'We have proved

Proposition 6. The set of all hermitian matrices of degree n and the
sef of all positive defintte hermitian matrices of degree n are both homeo-
morphic to ™. The mapping « — exp a ts a homeomorphism of the
first of these sefs onto the second.

§V. REPRESENTATION OF GL(n,C) AS A PRODUCT SPACE

Proposition 1. Any regular matriz v may be written in one and only
one way as the product v = ca of a wnitary mairiz o and a positive
definile hermitian matriz c.
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We consider 7 ag a linear endomorphism of the vector space Ccn.
If a is any vector in C*, we have (Cf. Formula (1}, §H1, p. 10)

a-(tr)a =rta-ta = (r)a-a 2 0

By Proposition 1, §IV, p. 11, it follows that the maftrix o = ris
hermitian., Moreover, if a is an cigenvector of a;, corresponding to &
characteristic root u, we have ula-a) = ma 7a, whence p 2 0.
Qince t7r is regular, it is a positive definite hermitian matrix.

By Proposition 2, §IV, p. 12, there exists a unitary matrix » sughy
that vagr-! is a diagonal mafrix &. Since the coefficients of, the
diagonal of & are real positive numbers, there exists a real diagonal
matrix & such that 82 = §,; moreover, the diagonal cuefﬁgiéﬁts of 8
may be taken to be positive. It follows that o = »~'rdse positive
definite hermitian matrix and thad a? = o . :

We set ¢ = 7o !, whence ¢* = a1V = e ="’%—la. We have
a? = &, = 7, whenee ‘r'a = f&! = 7; ¢ is umpdry, and we have
T = gc. AN

Suppose now that siey = oaa, with 0’1~3hdh62 unitary, a; and a»
positive definite hermitian. We sct os(=o7l01; then o is unitary
and we have o1 = oo It folluvgs"ihat ap = e = o) = alcrgl
and ol = oy o = a1 BY Proposition 5, §TV, p. 14, we have
o, = exp B, az = exp By whereBpand fB: are hermitian matrices, and
congequently exp 261 = ol =0l = exp 28:. By Proposition 5, §IV,
p. 14, it follows that 2}3'{,& 28z, B1 = B2 and a1 = oz Hence o3
is the unit matrix and o1 9, which completes the proof of Proposition
1.

Remark. 1t{ wliaws easily from Proposition 1 that a regular matrix r
can also be writ’tén’ ‘n one and only one way in the form 7 = ac, where
¢ i¢ unitary @nd « positive definite hermitian.

Propagition 2. Any complez orthogonal mairiz p may be writien in
one apd\only one way in the form @ (exp A/ —1 B) where ¢ is a real
orthogenal matriz and where 8 15 @ real skew symmetric malris.

\By Proposition 1, we have p = o, where ¢ is unitary and e her-
mitian positive definite. The orthogonality condition ‘po = € gives
totor = o', We know that o can be represented in the form exp B,
with a hermitian g8i; hence o~ = exp {—$,) is again hermitian. The
matrix ‘r, and thercfore also 'oo, is unitary. Since tg = exp ($81) is
hermitian, the unigueness assertion in the remark which follows Pro-
position 1 gives ‘oo =€, ty = o). Since ‘oo =¢, 073 = € WE have
¢ = &, which proves that ¢ is real orthogonal.

The cquality ‘e = « ' gives exp (8) = exp {—B1)- Making use
of Proposition 3, §IV, p. 14, we see that 18, = —Bi, i.¢., B is skew
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Symmetric. Since also ‘8, = ;, we have Bi= =B If we ‘et
B = +/—18, 8is real skew symmetrie, ‘

Conversely, any real orthogonal matrix is algo unitary, and, if B
is real skew symmetric, v/ —1 Bis hermitian and exp /=1 Bis positive
hermitian. Hence the uniqueness assertion of Proposition 2 follows
from Proposition 1.

The factors o, o of the decomposition of T qiven in Proposition 1 are
CONUNUOUS functions of r. In fact, let (ra, -+ -, T, ) be a
sequence of regular matrices which converges to a regulardhatrix 7
and suppose that T2 = 0p, 0pel(R), @, positive hermiti'an\. Beeause
Uln) is compact, tho sequence (o0, + - - s 0 ) h:g,s\'a‘subsequence
which converges to 4 limit sel/(n). The corresponding matriceg
a4 = g7'r, clearly converge to the limit o — o ' \Since the set of

one decomposition of - in the product o\ unitary matrix and a
positive definite hermitian matyiy Itj‘fhﬂows that ull convergent
subsequences of the sequence (g, - .o 95 * * ) have the same limit
o, which proves that lim,,_, _ p = o find zlim:H = % = a.  Our assertion
is thereby proved. Tt follows Lasily that

) .. . the matrices ¢ and 8 of
Proposition 2 ape contlnuouﬁj;functions of the complex orthogonal

The set of al) Positiveofiniza hermitian matrices of degree 7 is
homeomarphi(? o BnA{Proposition 5 §1V, p. 14). The set of all
skew symmetrio realMatrices of degree n g obviously homeomorphic to
Rnin=nre ‘{{ence\&e obtain the fnllowing results:

Prop031t10.1.1,3“.‘ The space 3y, (n, C) s komeomorphic to the lopological
product of the(@paces Uln) and g

44 1€ space O(n, (') 45 homeomor phic
to the Prodiact of the spaces O(n) gng Rwtr—1s2. )

A&
\\“ §VI, QUATERNIONS
. ';{‘he algehyg, Q of Quaterniong ;

:t{ne field B of yeg) Dumbers, wity,
\»\3 ©8; €1, &3, €3 Whoge muItxplieation table i

5 an algehry of dimension 4 over
4 base composed of 4 elements
S given by the following formulas:

(1) Gobi = eiey = ¢, 6 = —g,: et ge; = ¢
) iy = — &=
(1 €43 fﬂ§3‘thema i .
? 1 1t -3 —y N :
€Ven permutation of thgpseg e ha ks assumed to be an

tjil: 2, 34). Therefore, g quaternion ¢
Addition 4 iDliaas. =8, With req] coefficients ay, a;, as, as.
ad multiplica g are defined by 4, usual diszributivit}'
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From these formulas we see at once that ¢p is the unit element of Q.
Morcover, it is casy to check that (g;e)er = eeser) (0 <4, 4, k€3,
henee Q is an assoclative but not commutative algebra.

If ¢ = auey + ZL,20;1s 2 quaternion, we denote by ¢ the quaternion

o3
¢t = augn — Z0i8

and ecall ¢+ the conjugate of ¢.

Wehave gg* = ¢'¢ = (Zal)es. Thenumber Zi¢ is a non negative
real number which can be equal to 0 only if ¢ = . This number iz ¢
called the norm of ¢; it is denoted by N{(g). N

If ¢' is another quaternion, it is easy to sec that \ \))

(ag +bg')* = ag* + b(¢);  (ar) = @y N\
() = ¢ ON
We cxpross these facts by saying that the c-onjugatioﬁ’}\q\ﬂ g' is an
involutory anti-automorphism of the algebra Q. “{c‘ fave
N(ggher = 9¢'(aq)* = gV (@)en = N(gheoN (@)es
whenee O
N(gd) = N(@N(g)
From the existence of the norm, we dedt{cé'that ) is a division algebra,
i.e. that every quaternion g # 0 hagé’é,h inverse ¢! such that g¢?
= g7'g = e, namely ¢ ' = (N(g))"g"

Tet €1 be the set of quaternions of the form ageo + @1e1 (with aq,
a€R). The sums and produets of elements of €, are in C; if geCly
and egl, then ageC). II;%G C, iz a subalgebra of Q. If we assign
to every elemont aoeo A ale£Cy the complex number a; + a1 v/ —1,
we clearly obtain an§omorphism of € with the field C of complex
numbers. \' Y

Since @ colitains a field isomorphic with C, it can be considered
as a vector _gpate over €. To be more gpecific, we shall make the
following definition: if geQ and & = ar + @ v/ —1 &, gz will represent
the t]1€’ﬁgrnﬁon glaoes + a:e). We have
g+ )z =g +gz;  qo+a) =g+ @]

glaz’) = (gr)e’ = (g2')z
and these formulas show that @ may be considered as a vector space
over (' (we write the multiplier z to the right of ¢ for convenience).
Any quaternion ¢ = Zjae; may be written in the form

g = esao + ay v/ —1) + exlas — as v/ —1)

It follows immediately that @ is of dimension 2 over C.
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To every quaternion g there is associated a mapping T, of @ into
itself, defined by the formula To(¢) = g¢’. We have T'y(g) + ¢f) =
T4} + Tolgs); furthermore, we have clearly (g¢')z = ¢(g’z) (where
zeC); it follows that T.(¢'z} = T.{¢)z, which shows that T, is an
endomorphism of @, considered as a vector space over €. Assuch T,
can be represented by a matrix of degree 2, whose coefficicnts are defined
by the formulas

T ofes) = eo®yr -+ esn AL
T'oles) = eoTiz T egZas O\

In particular, we have Ko
NS ©

. 10 - VTI0 \/
N0 1 * 0 /=1
_ {0 =1 B (RO Pt |

T“(l- 0) “*(—x/“——'l’ 0 )

whence NV

N\ g
T itey = S0 M

On the other hand, we ha}@‘;'quqg =74 07T, It follows that the
mapping ¢ — T', 18 a repregentation of the algebra Q by matrices of
degree 2 with coefficient in*C.
Finally, we obsein,v‘é that
2 3

2) . KO e + )t = oot — esy

whence T/ €47,
\\ §VII. SYMPLECTIC GEOMETRY

I_‘QBQ be the algebra of quaternions: n being some integer > 0

woudenote by @ the product of # sets identical with Q. An elcmcnt’

. \”“(*al, T a)Edt (agQ, 1 <7< n) will be called g {quaternionic)

N vector; s, © -+, @, will be called the coordinates of this vector, The

additi.on of vectors is defined by the addition of the correap.onding

coordinates; if & = (a1, * * -, a,) is a vector and 4@, we denote by

ag the vect(n_" {ag, * -, @.¢). The vectors obviousl\:' form an addii
tive group with respect to addition, Morcover, we ha?ve

@ Fadg =ag+ag  aln+g) = ag, + ag,
a(gigy) = (ag1)qs

wh
ere 4, a;, as are vectors and ¢, ¢y, ¢, are Quaternions. (We eould
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also define the left multiplication (g, a) — ga; however, we shall not
use this type of multiplication.)

Ifa=(a, ' ,a.and b = (b, - - -, b,) are vectors, we shall
define their symplectic product a - b to be the quaternion

a-b = 2} aiy

This product has properties which are similar to those of the hermitian
product introduced in §I1I. We have

(a1+ag)-b=a1-b—f—ag-b; Q)
a'(b1+b2)=a'b1+a'b2; a-(bq)=(a-b)q'~\
(ag) b = g'(a-b) AN

We have a-a = I} aia; = {lalle, whore {[a]| is a real ‘ﬁy\ﬁlbcr 20

which is called the length of a. This length is always #40 if a < 0.

A veetor subspace of @ is a subset IR such thafb\the conditions
acI?, beM and ¢=Q imply a + bed and ageIN. MhH;, - - -, anarea
finite number of vectors, the set of all vectors af\¢he form a:q; + - - -
+ argalqi, * © -, @& @) is a vector subspace of @ which is sald to be
spanned by ay, - * * ,a. If moreover thepondition Thag: = O implies
qu= -+ - = @ =0, wesay thata,, - A " a»are linearly independent.

In particular, the space @ it&jé;lf' 1s spanned by the n linearly
independent vectors ey, * + -, e Where e is the vector whose Jj-coordi-
nate is 8;e. N

Exactly as in the usual‘,pé{se, it ean be proved that:

1) every vector subspade MM of @* can be spanned by a finite
set of linearly indepéndeént veetors; such a set is called a base of the
space IN; o~

2) all bases 61 have the same number of elements, called the
dimension of I, X

3y if m\\is«é vector subspace of I, the equality dim ¥ = dim M
implies &m’ = .

én'é,ﬁdomorphism of Q*is a mapping ¢ of Q" into itself such that

N ola + b) = ca + ob; alag) = (sa)g
for any a, beQ~ and ¢e@. Such a mapping is obviously entirely
determined when the veetors
ge; = Z_ 85

are given. Hence, the linear endomorphisms of @" are in a one-~to-one
correspondence with the matrices (gi;) with coefficients in Q. We
shall denote by the same letter o the endomorphism itself and the
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corresponding matrix. If ¢ = (g;) and = = (ry) are two of these
matrices, we denote (as usual) by o7 the matrix {s;) with

8ij = Zie1Gate;

and then we have o = ¢ 0 7, 1.6. (07)a = o{7a) for every vector a.

If ¢ is any matrix, either there exists a vector a # 0 such that
oa = 0, or ¢ has an inverse matrix o7 (i.e. ¢o™! = ¢~ l¢ = ¢, whoere ¢
is the diagonal matrix of degree n whose diagonal cocflicientgare all
equal to ¢g}. In fact, if the condition a # 0 implies ca £ 0N& is an
isomorphism of Q" with a subspace I of Q; hence dim P dim @,
whence It = Q. It follows that ¢ has a reciprocal mafping, which is

N

obviously also an endomorphism #—1 - N

The set of all matrices of degree n with cocfffients in @ will be
denoted by a,.(Q). \

A matrix ¢2,(Q) is said to be symplectif jloa|| = ||a]| for every
agf)”. Exactly as in §I11, p. 9, we can pm\*e the following facts:

1) if ¢ is symplectic, then sa - oh ~=\xa‘-'b for any two vectors a, b
in Q=; O

2) a necessary and sufficient, kondition for o to be symplectic is
that %'+ ¢ = ¢, where ¢ is the xiéit- matrixz defined above.

Therefore, if ¢ is sympleétit, the condition ca = ¢ implies a = 0;
o has an inverse, which f:é'obviously ‘r*.  We have also o - to* = ¢
which shows that ¢! igalso symplectic.

It follows easilyghat the symplectic matrices form & group.

Definition 15 We define ihe symplectic group for the dimension n
{denoled by Spiny as the group of all matrices e, {(Q) such that

AS

\ cd-ch=a'b

&
hofdf{ ,_Q:r"dn_y two vectors a and b in Qr,
"I}geﬁnition 2. A vector a 1s called a unit vector if the length of a is 1.
. Fhe vectors a and b are said to be orthogonal if a-b = 0. The st af
\ yectors {ay + -+, &y} is said to be orthonormal if we have a; - a; = Sye0.
For instance, the n basic vectors By - -, &, form an orthonormal
set.
Proposition 1. Let a,, - - - » 8w be m linearly independent veclors
n Q. There exists an orthonormal sel {biy * - - | b} such that, for
each k& (1 S k € m), the set of vectors tby, - < -, by} spans the same
subspace as {ay, -+ - | &y},
9The proof is entirely similar to the proof of Proposition 1, §I17,
p. 9.
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On the basis of Proposition 1, we can obtain the following result
by an argument similar to one used in §111:

Proposition 2. If a is any unit vector in Q*, there exisls a sym-
plectic matrix o such that ve = a.

§VIII. THE LINEAR SYMPLECTIC GROUPS

Let us again consider the vector space @* which was introduced in
the previous section, If a = (ai, + - -, .)8Q", we may represent
a;in the form a; = e + 2044, Where 2; and 2, - arc complex numbers
(1 £¢ %€ n; Cf §VI, p. 16). We assign to a the vector t}f\‘({f i
whose coordinates are #4, © © -, ¥, - * * , Tz.. Thig corrgspondence
preserves addition. Moreover, if a corresponds to the vector a'sC*,
then afue, 4 ve)) corresponds to the vector a’(uw + 2.8/ +1) (where
% and » are real numberg), because we have RS

asues + vey) = adu + v 4/ —1) = eowiu + v \\/—_1) o
(O eatmnlu 0 V=1

It follows immediately that there corresponds to every endemorphism
o of @* an endomorphism ¢’ of C** su¢h.that

oa —o'a’ oNIf a—a

Moreover, to the product g% of two endomorphisms ¢ and 7 of @"
there corresponds the prg@u)t &7 of the corresponding endomorphisms
of (%, W\

The correspondetiee ¢ — ¢’ gives an isomorphism of Sp(n) with a
subgroup of GI{ZW; C). The latter group will be called the lLnear
symplectic grom{ﬁ The sct of elements of the linear symplectic group,
being a su{sc“e\t‘of GL(2n, C), may be considered as the set of points
of a subspace of GL(2n, C). Hence, we may infroduce in Sp(n) a
topologisueh that the mapping ¢ — o is 8 homeomorphism. When
wewsp&k of Sp(n) as a topological space, we shall always have this
topology in mind,

We shall now determine algebraically the linear symplectie group.
Let o = (g:;) be any matrix in Sp(n), and let ¢’ = (rz) (1 € %, 1 < 2n)

be the corresponding matrix in GL(2n, €). I a' = (x), * - -, Tza)
is any vector in €%, ¢'a’ ig the vector (Z1, * - -, %2a) With
(1} B = Zimrwm

Supposc that a’ is the vector which corresponds to a vector asQ".
Let b be another vector in @7, and let b = (31, * -+, ¥2.) be the
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corresponding vector in C?.  Then, we have, by an easy computation,

a-b = 62y + e 2li(8die — Titalfi)
= 60(3 b) + e2ZLi(Birn — Pisald)
Moreover, we have ¢'b’ = (§1, - , 2a), with
(2) gk = Ez:f-"k!yi

Since sa - ob = a - b, we see that the lincar substitutions (1) and (2},
performed on the variables x and y, leave unchanged the quantities
Z%%a, and ZN@@iem — Tirays). The first property shows‘that o
belongs to I7{2n); we shall express the second by saymg that' o’ leaves
invariant the bilinear form ENTditn — Tipalis)- \

Conversely, let ¢’ be a unitary matrix which leme es invariant the
cxpression ZHzdin — TiraYs). We may asmgn}tb ¢ a mapping ¢ of
0" into itself such that ¢'a’ corresponds tongdMt a’ corresponds to a
(under the correspondence which was’,eﬁtablishcd above between
vectors of Q» and of C*). We have @ & b) = va + ¢b and oa - ¢b

= a b (where a and b arc arbitraxgp\vectors in @*). This does not
yet prove that o is an endomorphism of @r; we still have to show that
{(ra)g = o(ag), where gisany qu‘atemlon It will be sufficient to prove
that b - ((sa)g — olag)) = 0 for any be@)*. We have

(o¢) - ({sa)g — cr(aQ)) = ((rrc) {ea)}g — (o¢) - o{ag) = (¢ a)g
—(c-ag) =

/ |

which proves our ‘Q@Bertlon We have proved
Proposition ¢y, The linear sympleciic group is the group of all
unitary ma{mqes n GL{2n, C) which leave invariant the bilinear jorm

¥ ’\ ) 1 ($:y=+n xz+ny\)

T}}m group is obviously a closed subset of GL(2n, ). Hence:
vTheorem la. The space Sp(n) is compact.
~ ‘ Let us now consider the set Sp(n, €) of matrices o "&Miy, () which
\ ‘are not necessarily unitary, but which leave invariant the bilinear form
2@ Yiin ~ Tiays). Now, the matrix J of the coefficients of this

bilinear form is
{0 s
-2, 5)

where ¢, is the unit matrix of degree . Thus our condition may be
expressed by the equality

(3> e = J
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Since the determinant of J is 5= 0, it fellows immediately that any
matrix ¢'eSp(n, C) is regular. Moreover, the product of two matrices
of Sp(n, C) and the inverse of a matrix of Sp(n, C) again belong to
Sp(n, (). Hence Sp(n, O} is a subgroup of GL(2n, C).

Definition 1. 7he subgroup of GL(2n, C) composed of the mairices
o which satisfy condition (3) is called the complex symplectic group and
is denoted by Sp(n, C).

We have secn in §II that the matrices of a suitable neighbour-
hood of e in GL{2n, €} can be represented in the form cxp X, withy
XeMo,(C). We shall now investigate under which condition wehave
exp XaSp(n, C). R \D

The condition %a’Je' = J may be written in the form %o’ = Je 1L
Yinee J{exp X)W1 = exp (~JXJ/) and oxp X = {exp X), we
see that we shall certainly have exp XeSp(n, C) if X r—J XS, or
JX +tXJ = 0. Conversely, let Ubea neighbourligod of 0 in 91, {C)
which satisfies the eonditions of Lemma 1, §IIND.'8, and let U, be
the neighbourhood U M JUJ. If we obselde that J® = —e and
thattJ = —J, we see that Uy also satisfies jc-lié}onditi ons of the lemma,
and that furthermore JUJ ' = Uy IE i# clear that the conditions
Xeliy, exp XeSp(n, C) imply JX + X4 = 0.

The matrices X for which JX 438XJ = 0 form a vector subspace
% of Maa(C). If we write X in-fle form

G (% X

N Xy X,
where Xy, X, XspXa Sve matrices of degree o, the condition JX + ¢XJ
= 0 gives AN

OF, = =X X=X =t

It foll‘utx;s:’t-hat @ is of dimension #? + 2n{n 4 1)/2 = 2n® 4 n over
C; Sy also be considered as a vector space of dimension 2{2n? - n)
ovenR,

The matrices Xel7; for which exp XeSp(n) are the matrices of &
which satisfy the supplementary condition tX + X = 0. They form
a veetor space of dimension 2r® + n over the fiekl of real numbers.
Therelore we have proved

Proposition 2. {n each of the groups Sp{n), Sp(n, C) there exisls a
neighbowrhood of the neutral element which is homeomorphic with an
open subset of a cartesian spaee 0f switable dimension. These dimen-
sions are Int + n for Sp(n) and 2(2n* + n) for Spn, €).
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Now, let ¥ = (y;) be any matrix in WM (Q); set

i1 (K] (I (A5 (23 4]
Yii ygfjeﬂ + yu)el + ?}5,)92 + yn 83(%1 s Hi's yu i yt_: ER)

= Pﬁ(y{m + yuh \/ l) + P”(y(m Jigsj '\/_1) : (1 “<‘\ i}j g\- 'H-)
Let X = (z3;) (1 € £ 2n) be the corresponding matrix in 9. (C).
Ifa" = (a9, © - -, a:gn) iz the vector in C% which corresponds to the
vector a = (@, * * * , @,) in @°, then Xa’ is the vector which cor-
responds to Ya. Set Ya = (@, * - -, dn), Xa' = (&, - '~\f2ﬂ)§
we have )

@ = eoTi + Ealnti G = ool + eafuze O
B= 2l d; = Z7Yuthy O
It follows by an easy computation that ) {’f;:

v =y 9P VI e =y bV -1
Entig = yi‘?) yif] '\/—1 Tntinti = ygjm yEJD '\/_1 (1 “g- i3 é ?1-)

1t follows immediately from these formu}a@?ﬁhat, _i.f a matrix XeM., ()
satisfies the conditions ‘XJ + JX = 0\ tX + X =0, it is the cor-
respondmg matrix of & matrix Ysmﬂ(Q) which satnﬁes the condition
Y + ¥Ve=0. N

The mapping which awgﬁ% ’m every matrix in 91,(() the cor-
responding matrix in ‘mg,k(f) 15 an isomorphism of the ring 9,.(6)
with a subring of <M. (%, On the other hand, this mapping may be
used to define a topolo‘m in M,L(Q} (we require our mapping to be a
homeomorphism)! \\If Yesmn(Q) and if X is thL corresponding matrix
in M. (), thet can\ ergvnu of the series EO p— Xr 1mp11eg the con-

\ X

vergenc(, oﬂthe sories Tp EP Y7, Wesetexp ¥ = 2, 0 Y. Let 9
be t ‘e\set of matrices VeI, (@) such that ¥V 4 ¥« = 0; it follows
fromi\what we have said that the mapping ¥ — exp ¥ maps some

‘nczg?abowhood of 0 in Y topologically onto a neighbourhood of the neutral
\ ~etement in Sp(n),



CHAPTER II
Topological Groups

Summary. Chapter 11 is concerned with the properties of groups which
result from the existence in these groups of a topology. Secction I contains
the definition of a topologieal group, of a topological subgroup and of produets
of topological groups. It turns oub that, in many cases, the study of a topo-
logieal group in a neighbourhood of the neutral element will give valuable
information on the whole group (CI. for instance Proposition 5, §111, p..35;
Theorem 1, §IV, p. 35; Theorem 3, §VII, p. 49 and Proposition 2, Chap}\ar
IV, §XIV, p. 134). In view of thig, it is important to characterize\Jotolly
the topotogical structure of a topological group: this is accomplished 0§11

If $ is a closed subgroup of a topological group &, the cos{cts'\modulo R3]
form a topological space /9. The spaces which can be oblained in this
way are called homogensous spaces. The definition of such'sps;ces is the object
of §1II. One of the reasons of the impertance of hoiggeneous spaces ig
that they provide the most general representations ef groups a§ transitive
groups of transformations (satisfying certain topdlogical conditions). In
particular, the spheres arc homogeneous spaces, flative to the linear groups
which were introduced in Chapter I A good part of the knowledge we have
of the topology of these groups is derived from this fact (CL. Proposition 3,
§IV, p. 33 and Proposition 5, §X, p. B9 :

If § happens to be a distinguishedssubgroup of &, then &/ is not only
a space, but also a topotogical groups U These factor groups are also considered
in Bection III. N\

Qeetion IV is coneerned with the conpectedness properties of topological
groups. The essential fact thete is contained in the statement of Theorem 1,
p. 356 which allows us i '\ﬁ)a’ny cases to pass from the local o the global in
the study of a topologieabgroup.

If ( is a eonnectef group, the elements of a neighbourhood V of the neutral
element form a Setléf generators of O Following the idea of studying a
group locally, AtNs natural to inquire whether it Is possible to construct all
relations hetween these generators wher the law of composition of the group
is known ~\!sly in V. Section V introduces the study of this question and
correlatéfg $ﬁ with the notion of local isomorphism of topological groups.
Exapmples are given which chow that, in general, the answer to our question
i nepative.

A more profound study of the problem requires the development of & num-
ber of purely topological considerations centering around the notion of cover-
ing space. Seetions VI, VI, VIII and IX are concerned with the elaboration of
this notion and its applications to group theory. Following an ides of
H. Cartan, we have departed from the usual method of using closed curves
in order to define simple-connectedness. We feel that the moticn of covering
space (ag introduced in Definition 3, §VI, p. 40) is the egsential notion;
roughly speaking, we define a simply connected space as a space which esnnot
be covered any more {Definition 1, §VIL, p. 44). It seems to us that the
main property of simply connected spaces is what we call the principle of

25
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monodromy (Theorem 2, §VII, p. 46). Theorem 3, §VII, P. 49 states
the main property of simply connected groups; it is again a principle of exten-
sion from the local to the global. It should be noted that the proof of Theorem
3 gives a typical example of the method of application of the principle of
monodromy,

In §VIII, we define the notion of Poincaré group for spaces which admit a
simply connected covering space. The Poineard group is the group of auto-
morphisms of the simply connected covering space, playing therefore a rolc
gimilar to that played by the Galois group of an algebralc extensicn, It is
shown that the Poinearé group of a topological group is alwnys a.helia.n.gnd may
be identified with a subgroup of the center of the simply connectedhcovering
group. In section IX, we prove the existence of simply connetted covering
spaces for a large class of spuces, -\

in section X, we determine the Poincard groups of sgmejof the classieal
groups.  The method consists in using the fact that the gloups in queslion
operate on spheres.  Proposition § then yields an :J,Iggrit}lm which allows us to
proceed to an inductive determination of the Poincaré proups. However, the
cagse of SO{n) cannot easily be completely settlefhby? this method, Alth ough
it is possible o prove by purely topological methgds ( making use of the notion
of the second homotopy group of Hurewicz)that the Poincaré group of SO(n)
is of order 2 for n 2 3, we have prefered.fq follow an algehraic approach by
actually constructing the simply conndafed covering group of SO(n). This is
accomaplished in Seetion XT by makingwse of the algebra of Clifford numbers,

The algebraie properties (cenfer ‘and ideals) of CLifford numbers are
established by an elegant methodsyhich was communicated orally to me by V,
Bargmann, We then define, the spinor group {Definition 1, p. 65) and we
prove that this group is the gimply connected covering group of SO(x).

§1. DEFINITION OF A TOPOLOGICAL GROUP

A topological wg\mup @ is the composite object formed by a group @

and @ topologictl, space B which satisfy the following conditions: 1} the

set of pointg §F B is the same as the sel of elemenis of G; 2) the mepping

(o, 7) =il of B X B into B is continuous.  The group G is called

the underlying growup of the topological group &, and the space B is called
tis URberlying space.

w1y notion which ig either group-theoretical {such as being abelian,

(for example.), or topological (sueh ag Leing connected, or compact, ete.)
yhas a meaning when applied to g topological group.

_ It‘is clear that the Inapping r — ! of g topelogical group @ onto
taelf is a‘homeomorphism and that the mapping (¢, 1) — o7 of @ X &
onto & is continuous, Conversely, these two conditions together
Imply condition 2) above

.

Examples of topological groups

1) rl‘"hut_-, additive group of real numbers is the underlying group of a
topelogical group, whose underlying space is the usual space of real
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numbers B; in fact, the difference 2 — ¥ is a continuous funciion of the
pair (x, %) of real numbers.

2} The group GL{(n, C), with the topology which has been defined
on it in §1, Chapt. I, p. 2, gives a topological group, which we shall
denote also by GL(n, C).

3) Let @ be any group, and let B be the discrete topological space
whose set of points is the set of elements of (. The group & and the
space B together make up a topological group. Such a group is called
discrete. )

We shall now indicate how we can construct new topologica}

groups, starting with those which we have already defined. (),
A\
Subgroups of a topological group ~\ Ny

Let H be a subgroup of a topological group ®. The é’et of elements
of H is algo the set of points of a subspace of &, énd this subspace
forms with H a topological group , which will be dalled a topological
subgroup of &. ,*1\\'

For instance, the groups GL{n, &}, O(ﬂ)',’b(ﬁ, ¢), U(n), SL{n, €},
SL(n, R), SO(n), SU(n) (which were dgﬁf}ed in §I, Chapt. I) are the
underlying groups of topological subgtaups of GL(n, C). The groups
Sp(n), Spin, €) (which were defingdiin §VII, Chapt. 1) are the under-
lying groups of topological subgelups of GL(2n, C).

Prodggtgzof topological groups

Let (§.) be a familyx}topological groups, o running over some set
of indices. Let G and’B, be the underlying group and the underlying
space of @, The\direct product G = ILG, is a group, and the product
B = IV, is.a{'gﬁné,ce. The group G and the space B have the same
set of elemgehts. The mapping (s, ) —ort of B X B into B is
continuguéy * In fact, the a-coordinate of e~ is oarg’, if oo and 7 are
the a-edordinates of ¢ and r; sers" is a continuous function of the pair
(o4 7o) which is itself & continuous function of the pair (s, ). There-
fore, every coordinate of er~lis a continuous funetion of the pair (v, T},
which proves our agsertion.

Tt follows that the group ¢ and the space B give rise to a topological
group ®, which is called the product of the groups ®,, and which is
denoted by II,&..

For instance, the additive group of clements of B* is the underlying
group of a topological group which is the product of » groups identical
with R and whose underlying space is the usual cartesian space R=,
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$1I. LocAlL CHARACTERIZATION OF A TOPOLOGICAL GROUP
Let G be & group.  To every element 7&( there are associated two
mappings of @ onto itself, namely the left tmnslatio& T,, defined Ey
T.e = 70 for every a2, and tho right translation T,, defined by T
= or. We have
Town=Tr 0%y T, = ThoT:

Tz TIT:

Moreover, T, is the reciprocal mapping of 7', and T2, isthe recip-
rocal mapping of 7. O

 If Gis the underlying group of a topological group Gythe mappings
T, TF are continuous mappings of & onto itself aid so are their
reciprocal mappings. Henee T, and T,* are hom%b’fnorphisms of @
with itself. R&Y

It follows that, if we know the completeMamily U of neighbour-
hoods of the neutral element € Wwe ean ob{ain the complete family of
neighbourhoods of any point o by applying either of the operations
T,, or Ty to the sets of U. This m’egns that the topology of & ig
entirely determined when the family)0 is given.

But, of course, this family ",{,}’('ia.nnot he given arbitrarily; it has to
satisfy certain conditions: N

L. The entersection of awyte sets of U les in U,

IL. The intersection_ of all sets of 0 is the se {e}.

111, Any set contginhg a sef of U lies in 0,

IV. It Vev, f%éf@ exists a set VieU such thai ViVy (V. This
follows at once from the continuity of the function gr at (¢, €).

V. The fomity of sets V such that V=0 coinocides with U, This
Hollows at af}(\te from the continuity of the funetion ¢—1 at e,

VI IZ0eG, the family of sets coVoy™, with Ve, cotncides with .

ThisJast property can be proved in the f ollowing way: the set of all
nqigi%ourhoods of oy coincides with the family of scts of the form ooV
(Jf' gU); therefore, every set of the form Vao(Va0) can also be written

<\;iﬂ the form ¢, 77, V'e, and conversely.

We shall now prove thut, if we have in a group & a family U of
:Subsots which satisfies conditions LI 111, 1V, ¥, VI, we can introduce
in ¢ a topology which makes & a topological group and for which T
is the family of neighbourhoods of ¢,

L.et.- U be the family of subgets [ of G which satisfy the following
f)l:ll’ldlt-l()l’l: if e2l’, then 17 contains sorae set of the form oV(Ven), It
i clear ths?t any union of sets of qp belongs to U and that Geal, geaf.
It follows immediately from I that the intersection of two sets of AU
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belongs to 4. Let V be any set in U, and let I be the set of elements
#¢G which have the following property: there exists a set V;20 such
that ¢V, ( V. We shall prove that Ugu. Tn faet, assume that
aelf, oV ( V, V180, Let Vs be a set of U such that VaVo' C Vijif
reVa, we have ¥V, ( V, whence 72U, oVy (U, which proves our
asgertion. If we observe that the sets of U are permufed among
themsclves by any left translation s, we see that any set of the form
oV, VU, contains a set {elt such that oel/. Let oo, o1 be two distinet
elements of ; wo ean find a set V12U such that o7 ¢ does not belofis,
to V1. By IV and V, there exists a set V such that V= C At
follows easily that VM o7le V = ¢, whence oV "oV = o .\'i-’i-’c\ca.n
find sets Uo, [71 in 4 such that epgly, 012Uy, Ta ( ooV, LW aiV,
whence U/, NI, = . It follows that we can define g €0bology in @
in which U ig the family of open sets, It is clear t the family of
neighbourhoods ¢f a point ¢2( in this topology isthe family of sets
oV, Vet : O

It remains to prove that the mapping (g% e7~! is continuous.
Let (oo, 7o) be a point of G X G, and let a‘ur};’y be a neighbourhood of
opry (e Vev)., Jeot Vihéasetin® &ueh that ¥,V ( V; by VI,
the set 73'V, may be written in th&¥orm Vry'(VeeU). We have
(Ve (V)" = 0oVars' Vi ( ooaiV1 Vi ( ooy V, which proves our
assertion. Qe

A subset U’ of the compléte set of neighbourhoods U of a point p
in g topological space is ga"ic}to be a fundamental system of neighbour-
hoods of p if every set ok contuins some set of V. To the conditions
I, 11, 111, IV, V, VI foy the sct of neighbourhoeds of € in a topological
group, there corteSpend the following conditions for a fundamental
system of neighbdurhoods of e:

V. I7 Vagl0h, Vo, there exists a set Vi&U' such that Vs ( V Ve

1I'. TKe'eniersection of all sets of U is the sel fe}.

T\-”,(fff Ve, there exisis a set V18U such that ViV C V.

WA V!, there exisis a sel V€0’ such that Vi1 C V.

A, If Ve, g, there exists @ set VisU' such that ooViey" (V.

§III. HOMOGENEOUS SPACES. FACTOR GROUPS

Let ® be a topological group, and let § be a closed subgroup of &.
We say that two clements o, v are congruent modulo $ if the left
cosets o9, 79 coincide. This is obviously an equivalence relation
among elements of &, and the corresponding equivalence classes are
the left cosets modulo $.
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To cvery p€ we associate the corresponding right translation T:
of ®. A necessary and sufficient condition for ¢ and 7 to belong to the
same coset modulo § is that there should exist a pgH such that Tre = 1.
The operations T form a group of homeomorphisms of ® onto itsclf.
Moreover we observe that the set of all pairs (s, 7} for which
there exists a peD such that T;kcr = 7 i3 a closed subset of @ X &,
since it is the reciproecal image of § under the continuous mapping
(o, 7) — o',

More generally, let B be a topologieal space, and let H hglavgroup
of homeomorphising of B onto itself. The group I defines ah cquiv-
alence relation in B, two points p and ¢ being consideredas@quivalent
if there exists an clement seH such that gp = g, WA¥sime that the
subset v of 8 X B which is composed of the pairs Py @) such that p
is equivalent with ¢ is elosed in B X 8. Theny” we shall define a
topology in the sct K of equivalence classegaS\Eet U be the family of
those subsets O of K for which the set Uy X is open in 8. It is
clear that any union or finitc interseetion/of sets in U belongs to U, and
that KeU, ¢s0. Let U be any ope§itbset of B; then the set of classes
X which have an element in comrpén‘ﬁ'ith U belongs to 0, Infact, let
O be this set, and let p be a p&int of Ures X. The point p belongs
to a class X which has a pgi{qi‘, g in ¢common with I7; there cxists an
element geff such that p 2mg.  The sct (U is open, contains g and
is contained in Uxeo X¢which proves that the latter set is open,  Let
X1, X, be two dist-ilgrcﬁ\equivalence clagses, and let a; be a point of X;
(t =1 2). The{er, a2} does not belong to v; sinee v is closed, there
ex1sts open setg'd), Uy in B such that (ay, a2)eliy X Us, v (U, X Us)
= ¢. .Let« O¢be the set of equivalence classes which have at least
one poingftommon with Us (2 = 1, 2); we have 0,60, X0, (i = 1, 2)
ff;\.nd Or("\ O.g = ¢. It follows that we can define a topology in K
in '}yi.k\xah T is the family of open sets. Let & be the mapping which
asagns to every pe® its cquivalence class; it is elear that & is a con-

... (Bifluous and interior mapping of B onto K.

N\

B

) 4

Returning to the consideration of the group & and of its closed
subgroup §, we see that we can define a topology in the set of all
cosets modulo . Let ®/9 be the topological space obtained in this
way. The space G/$ is called the factor space of @ by .  Any space
which may be obtained in this way by means of a t-opol(;gical group &
and 2 closed subgroup of ® is called a homogencous space.

The mapping which assigns to every oe® its coset modulo His

called. the naiural mapping of ® onto ®/9. We shall denote this
mapping by .
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Iz = o$H20/H and 7@, 09 is a coset modulo £ which we denote
by rz. This shows that any element 7¢® defines a mapping of /5
onto itself; in other words, the group & operates on &/H.

Tf ye®/$, there always cxists a 76® such that rz = y; therefore,
 operates transitively on ©/9. A necessary and sufficient condition
for the equality 7z = o hold is that rege$, whence 7éa o™ There-
fore, if 2 = &(a), the group of elements + which leave @ invariant is
oL,

Now, we prove that the mapping (¢, 2) — ¢z of @ X (&/9) outa
/% is continuous. Let U be an open subset of $/9, and legt ¥,
be the sct of pairs (¢, &) such that ezel/. We have to prove tl{aj‘hﬁl i

{ -1

open; let (g, ©o) be a peint of Uy, and let V be the open aub‘sé't @ (1)
of & If 1y is any point such that @lr)) = zo, Visa npigllbciurhood of
sore; therefore, there exist open sets Vi, Vi suc.h.tlmf ae V1, m02 ¥y,
ViVe ¢ V. Let U7 be the set &(Va); since & is ah\interior mapping,
(" is open in ®/9. Therefore ¥y X U ia&sp’en in & X (&/9);
moreover, we have (oo, za)eVy X Us, Vi >&U, ( Uy, which proves
that U7, is a neighbourhood of (ov, x). MMollows that Uy is open.

In particular, if we fix ¢, the mapping z— o.(x) = oz of B/D
onto itself is continuous; ¢,-: is the reciprocal mapping of ¢, and is
also continucus. It follows thati for every fixed o, ¢, is a homeo-
morphism of ®/§ onto itsell., ™ )

Let f be a mapping of @\nto some set X. If the value of f(s)
depends only upon the ceset o9 of ¢, we can define a mapping fi
of &/ into X such%hat f=fioa: we set fL{(e®) = fls). Hup-

pose that X iz a tepelogical space. Then, if f is continuous, f1is
—~1

also cuntinuous;\:{n fact, let ¥ be any open subset of X; the set f1 (¥)

OY -1 -1

coincides “ith a( f{Y)). Since f is continuous, j(¥) is open, and
O\ —1

thcrefo;é]"also f1 (¥), which proves that fi is continuous. If fis
an/Anberior mapping, so is fi; in fact, if U7 is an open gubset of ®/H,
4 -1

7T coincides with f( & (U)) which is open because « is eontinuous
and fis Interior,

Proposition 1. If © and &/9 are compact, the group & is eompacl.

In fact, let ® be a family of closed subsets of ® which has the finite
intersection. property (i.e, every finite sub family of & has a non-empty
intersection). We have to prove that the intersection of all sets of @
is not empty, We may assume without loss of generality that the
intersection of a finite number of sets of ® belongs to @. Let ¥ be
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the family of the scts a(F), for Fad; W iz a family of subsets of &/$
and has the finite intersection property. Since ®/9 is compact, it
contains a point z which is adherent to all sets of ¥,

Let {7 be any neighbourhood of the neutral element ¢ in ®, and let
@0 be an element of & such that a(sy) = z. Then w(Us¢) 13 a neigh-
bourhood of z, and therefore mects all the sets a(#}, Fed; it follows
that, if Fed, we have F ™ UeyH # ¢, or U—'F M oo8) #= ¢, Let &,
be the family of sets U—'F ™ 64, F running over all sets in ® and [7
over all neighbourhoods of &. Then &, hags again the finite dfhiersce-
tion property. In faet, if /7y, - - - y Fugb and Uy, - - WU, ure
neighbourhoods of ¢, the set 7, (U7F; D 0 $) containg B M g0 H
(where (7 = N2, Usand F = (|2, F), and the latler def1s not empty
because Fe® and {7 is & neighbourhood of e, But sif¥is homeomorphie
to 9, and therefore compact. Consequent-ly,.@erc exists a point
1800D which is adherent to all sets of &y, and, aj’g}ta’oml, toall sets I'=1F,
If we keep F fixed and let £ run over all ngighbourhoods of e, /!
also runs over all neighbourhoods of 3 a;@\ﬁ'jf()llows that ¢, is adhercnt
to £, Sinee F is closod, we have ¢,gF yLroposition 1 is thereby proved.

Spheres as hor}gﬁéeneous spaces

Let us consider the group.@ié Ofn}, with n 2 2. Those matrices
o¢® which are of the form 3\
e 0

L

Q
ll
Q¢

..\‘\ 0.....
cbviGusly form a closed subgroup § of &. The matrices # which
oclur in the matrices o€D are clearly the matrices of On — 1); it

m:f,(}llows immediately that D is isomorphic (as a topological group)

N with On -1, -

Let us now consider the real matrices of degree n as endomorphisms
of the vector space B7 in which we select the base (e;, - - - s €a)
composed of those vectors whose coordinates consigt of n — 1 zeros
fa,nd 2l If ¢ is any element in O(n), we sct ale) = ¢€,. Since ¢
18 orthogonal, a(s) is a unit vector. If ¢eH, then ce, = ¢,. Clon-
versely, if ce, = e,, and if ¢ = (z57), we have z,, = 8l € § € n).
Binee o is orthogonal, we have 2w, = 1; since x,, = 1, it follows

0
01
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that x,; = 0 for ¢ < n, whence eeD. Therefore, a necessary and
sufficient condition for the cquality afe} = ale¢’) to hold is that
¢'gaH. The element a(e) depends only upon the coset = of ¢ modulo
H; we may therefore set afe) = a(x).

The set of unit vectors aefl® is the unit sphere 8771 of dimension
n — 1. Hence, we have an obviously continuous mapping z — a(z)
of /% into S*~1.  Morcover, this mapping is univalent.  Proposition
3a, 8111, Chapt. I, p. 11 shows that cvery ae8*! is the image of some
clement 2®,/$ under our mapping. Sinee ®/H is compact (beingd
eontinuous image of O{n)), the mapping x — a(x) is topologlealA

We may identify O(r — 1) with the subgroup , and get th({f?ﬂ.lmv—

ing result: W
Proposition 2. The factor space of O(n) by O{n —J¥s homeo-
morphic with S if n 2 2 &

N\
We observe next that, if agS™, there alwaysledists oh element
g8S0(n) such that gse, = a. In fact, lot us sele\ct un element. o,80{n)

with the required property;if [a = —1, we r@lﬂ\?e o1 by ¢ = o5, with
-1 0. .%o
LY. .0
7= 2\ SN
B8 o 1

We have 0280(n), oe, = ae\Therefore, we have

Proposition 2a. If 9&\%2, the factor space of SO(n} by SO(n — 1)
s homeomarphic with ST

If we observe thal fhe sct of unit vectorsof €7 is homeomorphic with
S#=1 we obtaing by entirely similar arguments,

Proposi ‘0;'[\3; The factor spaces of U(n) by {/{n — 1) and of SU(n)
by SU(n — L) are homeomorphic with 8¥~! for n = 2,

I*‘inalh}, let us consider the group Sp(n), withn > 1. The clements
of Sp(r'ﬁ ‘are matrices of degree » with coefficients in the division
alg‘ﬁbfa"() of quaternions, Let us introduce the vector space ¢* over
@, as we did in Chapter I, §VII, p. 18. Those elements 0&Sp{n)
which leave the basic element e, = (0, - - -, 0, 1) invariant are the
matrices of the form (1) with #eSp{n — 1). They form a ‘subgroup
of Sp(n) which we may identify with Sp(n — 1).

We have defined (Chapt. I, §VII[I, p. 21) a one-to-one cor-
respondence between Q* and C?*; this correspondence allows us o
introduce in @ a topology, and the operations of Sp{n) are continuous
mappings of Q» (with this topology) onte itself. The images of e,
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under these operations are all the unit veetors of @, as follows from
Proposition 2, §VII, Chapt. I, p. 21. On the other hand, Formuls
(2), §VIII, Chapt. I, p. 22 shows that the unit vectors of @* are
those which correspond to the unit vectors of €**; they arc the ele-
ments of a set which is homeomorphie with S4-1,  ITence:

Proposition 4. The factor space of Sp(n) by Spin — 1) is homeo-
morphic with the sphere S*', if n 2 2.

Factor groups Q)

Let us now consider the case where § is a closed distinguished sub-
group of 8. Let ¢ and H be the underlying groups ofhand §; then
the factor group G/I is a group whose set of c]qm’eﬁts is the set of
points of the space ®/9; the natural mapping gyof ® onto M/Disa
homomorphism of G onto G/H. We shall sed fhut the group G/H,
together with the space /8, gives a topelegical group. Let zq and
7o be elements of G/H; we set zp = zoyy . a0 we denote by I an open
subset of ®/9 containing z,. lLet qq,'\’m be elements of G such that

w(oy) = z0, @(re) = yo; then & (Ton 1¥'an open set in @& and contains
oorg . It follows that there exist open sets Vy, ¥V: in @, such that
—1 <N

aieVy, 7€V, ViVy' ( o dP. The sets U, = (V1), U = a(Vy)
are open in 8/$, and thelonditions zelly, yel, imply zy~iel/, which
proves that the mappidy (z, 4) — zy~t of (&/$) X (/D) onto B/
is continuous. \

The topologi’s{k group which we have defined is called the factor
group of © byc®; 1t is denoted by &/,

For in:?‘t;a.iieé, let H be the subgroup of B» composed of the points
with integral coordinates, The group H is obviously a cloged discrote
subgroupvof E». The factor group £*/H is called the n-dimensional
torusalid is denoted by 7 The group T is also denoted hy 7' it is
}}orgleomorphic to the circumference of a cirele in B2, 1t is easy to

(8¢ that 7 is isomorphie (a8 u topological group) with the product of n

times the group 7.

Let ¢ be a continuoys homomorphism of a topological group ® into
some other topologieal group (.  The kernel of this homomorphism
(i.e. the set § of clements of & which are mapped upon the neutral
elt::nmnt t')y v) 1s a distinguished subgroup of , and is closed because
¢ 18 confinuous. The clement, ¢le) dopends only upon the cosel #5
of ¢ rr}odult) 9, and hence o deflnes a continuous homomorphism ¢, of
/9 into ®,, The homomorphism 1 is univalent, but it should be
observed that ¢; is not necessarily a 110meom0rphis;n.
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Proposition 6. Lel ¢ be a homomorphism of a topological group &
into a topological group ®1. If ¢ is continuous at the neutral element
e of O, it is conitnuous everywhere.

Let oo be any element of ®, and let ¢{o¢)V1 be a neighbourhoed of
o(oo) in @1 (Vy being a neighbourhood of the neutral element in &).
By assumption, there exists a neighbourhood V of ¢ in ® such that
(V) ( Vi, whence o{oeV) o(e0) V1, which proves that ¢ is con-
finuous at go.

§IV. COMPONENTS OF A TOPOLOGICAL GROUP

Proposition 1. The component of the neutral element e in allopolog-
ical group ® is a closed distinguished subgroup of ®. .\

[n fact, let K be this component, and let = be an element in K.
The right translation associated with 7= being a ho\n{gomorphism of
® onto itself, the set Kr~!is connected and contains Ml = ¢; it follows
that K7~ ( K, whence KK—' ( K, which shows that K is a subgroup
of . Now, let p be any element in ®&; th,e’n}a:pping c— poptis a
homeomorphism of @ onto itself. It followethat pKp™ is conneeted;
since eepK !, wehave pKp™t ( K, which{pydves that K is distinguished.

The factor group ®/K is called the yroup of components of (&; its
clements are the cosets of K, whichvare also the components of @.  If
the group ® is locally connected (i.c., if there exists a connected
neighbourhood V of €), the group ®/K is discrete. In fact, the image
of V under the natural mapping of & onto ®/K is a point (because
V ( K) and is a ne‘i{hb’ourhoud of the neutral element in ®/K
{because the naturalmapping is interior).

Theorem 1. \J#sa connecled lopological group, any neighborhood of
the neutral element’is ¢ set of generators of the group.

In fact, 5% be a neighbourhood of the neutral element in a con-
neeted grohi"@j, and let H be the subgroup generated by the elements
of V. JfhgeH, we have also VeeH; therefore H is an open set. But,
QT bpen subgroup H of a topological group @& is also closed, for every
coset modulo 77 is an open set, and H is the complement in & of the
union of the cosets different from H. It follows that the set H is
open and closed in ®; & being connected, and H being not empty, we
have H = @,

Remark. More gencrally, we bave the following result: Let @ be a
topological group, and assume that V is a connected neighbourhood
of the neutral clement e in & Let W be any neighbourhood of €;
then, any element ¢¢¥V may be written in the form awse * = * om With
oW (1 < ¢ < m) and s - - - o€V (L &4 < m). To prove this

Q!
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result, we may assume without loss of generality that W = W—:
and that W ( V' (if these conditions were nof satisfied, we would
replace W by a smaller neighbourhood). Let E be the set of clements
of ¥ which may be written in the form indicated above. Tt is clear
that, if s&E, we have also eW ™V ( E; therefore E is relatively open
in V. Let oo be a point of ¥ which is adherent to £ then oW has 1
point ¢ in common with E. We have soseW~! = oW, whenee ol
which proves that £ is also relatively closed in V. Since e and V
is connected, we have E = V, which proves our assertion.

Proposition 2, Let § be a topological group, and let &ybe « closed
subgroup of @. If the group © and the factor space & /9 aré connecled,
then © i3 connected. AL

In fact, assume that ® = U\ V, where aild 'V are fon empty
open scts.  The natural mapping of & onto $fSmaps I and V onto
open subscts Uy and Vy of &/9, and we diave G/H =0,V It
follows that 7y ™ 7, contains at least one tlement 615 of B/H. This
means that 19 mects both U and ¥F/O'We have 1 = (@1H M)
w e V) On the other hand)Ng ) is homeomorphie with §, and
hence connected. Tt follows that\l? and V have at least one point in
common in ¢19.  Proposition.2s thereby proved,

Lemma 1. The spherea8¥n 2 1) s connected.

S® is the subset of R# defined by the equation

ONEE el =1
&
Let & be the et composed of the points of 8* for which z,,; > 0. If
we map the@olnt (z;, - - - | 2, )k upon the point (zy, - - - |, 3,)eR",
we clea’tlz“obtain ! homeomorphism of E with the set B» composed
of the~peints (z, - - - » #a) such that =7 22 € 1. The set B® is
ol@)};’a.{m}ﬂy connected; hence X is connected, Similarly, the lower
hg{msphere E' of 8~ defined by the condition Topr € O is connected.
m:j}SmCG n 2 1, the sot BN E i not empty. It follows that S* is
\ } “connected, )

Lemma 2. 7he groups SO(1), (1), SU(L), 8p(1) are connected.
The groups SO(1), SU(1) contain only their neutral elements. The
group U(1) is the muitiplicative group of complex numbers of absolute
value 1‘; it is homeomorphic to 8!, and hence connected. The group
Sp(l1) Is the multiplicative group of quaternions of norm 1. A
quaternion of morm 1 may be wiitten in the form ae, + a161'+ Q92

+ 23ty “’ith 23_ ﬂﬂ-? =) 1 It fUHU\«VS eﬂ.“si]\-" th . .
. H i= 00 . sily at S 1 .
with 5% and hence connected, P is homeomorphic
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Proposition 3. The groups 80{n), U(n), 8U(n), Sp(n) are all con-
nected for n = 1.

This is proved by induction on =, mdking use of Proposition 2,
Lemmmas 1 and 2 and of Propositions 2z, 3, 4, §11I1, p. 33.

On the other hand, the group 0(n) has exactly two connected com-
porents. In fact, it contains a matrix of determinant —1, namely

|
=
—
=

/

N

0 0....... 1 RN
A\

Since the determinant is a continuous function which doeg not’vanish
on O(), O(n) cannot be eonnected.  Omn the other hand, O(n) con-
tains SO(n) as a distinguished subgroup of index 2.'\‘I10n(ze it has
exactly two connected components, one of which 1880 (n), and the
other the set of orthogonal mafrices of determ}’r@r}‘t —1.

§V. LoCcAL ISOMOQRPHISM, V:EXAMPLES

Lot & be a connected topological grotip, and let ¢ be the neutral
cloment of & We know that any heighbourhood V of e is a set of
generators of & (Theorem 1, .§I’Y,’ p. 35). We shall now inquire
shout the relations between t-hes’sé'gencmtors‘

Let us assume that we’.h{\re an analytic apparatus which permits
the computation of pre 1()@:’@5t or only in the case where o, 7 and or lie
in ¥ (we shall see lathe} that this situation arises in many cases).
Then, to each paw e, r) of elements of ¥ such that o7 eV, there
corresponds a pélation ¢r = p between our generators of &, The
question is: areldill the relations which hold between elements of V
c0115;equenpe\\slr;ic relations of the type we have just deseribed ?

We shiall see in a moment that the answer to this question is
nega(t-ii'ﬁ in general. Before deing that, we shall first formulate our
pmbléfh in a differcnt, but equivalent, way.

Definition 1. Let ®, &, be fwo topelogical groups. A local isomor-
phism of & into &, 43 a homeomorphism f of some neighbourhood V
of the neulral element ¢ of © onto ¢ neighbourhood Vi of the neutral
element € of V1 which has the following properiies:

1) the conditions aeV, eV, o7&V dmply [ (or) = f(e)f(7);

9} the conditions a2V, 78V, f(er)eV1 imply oreV.

In terms of this notion, our original question may be formulated
as follows: f being a local isomorphism of & with ®, is it always pos-
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sible to extend the domain of definition of Jtoall of @ in such & way
that f becomes an isomorphism of the underlying group of & with the
underlying group of ©,?

We shall give two examples which show that this extension is not
always possible:

1) Let ¢ be the mapping which assigns to every real number « itg
residue class ¢(z) modulo | ; let f be the contraction of ¢ to the interval
1= % + 3. Itis clear that fis a local isomorphism of R into.7. But
f cannot be extended to gn isomorphism of B with T, becahse these
Eroups are not isomorphie, Ko

2) Let us consider the group Sp(1), ie. the multiplicitive group
of the quaternions ¢ = acy + bey -+ ces + dey sucb‘,"k‘}fﬁt a* + b 4 ¢2
+d*=1 To every such quaternion ¢ there is associated a linear
mapping T, of § (the algebra, of quaternions)Soiito itself, defined by
the formula T',(r) = grg=(r20). We have v

Tolr) = grg? = (9"1).“5‘”;'}9‘\:: (Tolr):

because ¢ = ¢ Tt follows that ) maps onto itsell the set P of
pure quaternions (a purc quaternion is a quaternion of the form
Ti€1 + o2 -+ 24e5); in fact, thefpure quaternions P are characterized
by the condition p. = —~p. I8

TQ($181 -+ .4172:3'2’+ 3:383) = x{ei -+ .1,';62 + .’B:gea
we have 8§

. b s
1) (\J £y = Zf:lai.f(g)xf

N\
Let 8(g) denot{j, ‘t-.h\e matrix (a;(¢}). We have Teoo=T,0 Ty whence
lgg’) = 8(@)06g"). Hence the MAPPIng ¢ — 8(g) is a representation
of Sp(1) b{r”matriccs of degree 3.

M noare any two quaternions, we have Tolrr') = Tolr)T,(r").
Smc\ Ye coefficient of ey in the expression of (Zlze)(Sihye) is — iy,
wevec that the linear substitution (1}, performed on the variables

) @and g, leaves invariant the expression Zizg:.  In other words, the
\"‘;matrix (g} is orthogonal.

W.e know that Sp(1) is connected (Lemma, 2, $1V, p. 36). The
Inapping ¢ — (¢} hein g cleurly continuous, it follows that 8(¢) belongs
to the connected component of the neytrs] clement in O(3), 1.e. to
S0(3). We shall now prove that 8(Sp(1)) is the whole group SO(3).
An easy computation shows that

1 0 0
#(Cos Aey + Sin Aep) = ([} Cos 20— 8in Py
0 Sin 23 Cos 2
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It follows that A(Sp(1)) contains the group g1 of all rotations around
the z-axis; similarly, we would sce that 8(Sp(1)) contains the group g.
of rotations around the z.-axis.  Qur assertion will therefore be proved
if we show that g1 and g, generate SO(3). Tet r be any rotation, and
let M1 be the extremity of the unit vector of origin 0 earried by the
zr-axiz. We can find an operation s; of ¢y such that s,(rM,) iz 2
point of the zuwseplane; this point being at unit distance from the
arigin, we can find an cperation s;€¢; such that ssrM; = M;; it
follows that ss:s1r€g1, which shows that r is in the group generated{by
g and gs. A

Let us now determine the kernel of the representation g—58(y).
If 8(g) is the unit matrix, ¢ must commute with every purewiratornion,
in particular with ey, 5, ¢,  We see at once that this coridition implies
b =e¢=d =0, whence ¢ = +1, Tt follows that thé'kernel of our
representation consists of the two quaternions e N

Let ¥ be a compact neighbourhood ol ey in Spil} such that —es does
not belong to VVV-1; then ¢ maps V¥ in a gépfinuous univalent way.
Since V is compact, the confraction of 8 £ Wis & homeomorphism of V
with some subset of SO(3).  We shall ptowe that (V) is a ncighbour-
hood of the neutral element in SQ3Y.° Let Vi be an open neigh-
bourhood of e; in Sp(1) such thab Vi ( V. The complement A of
Vi (—e) Vi in Sp(l) is comdpact. Let U7 run over all compact
neighbourhoods of the unit{matrix in S0(3); if the family of sets
-1

8 (L) ™ A had the finite.antersection property, there would exist a
point ged sueh thatng(Pzl for every 7, whenee #{g) = E (the unit

matrix), and this jgimpossible. Since any finite intersection of sets
-1 2K

of the form 8 (L9 A is again of the samc form, it follows that there
-1

exists a nei;g‘\}{i{ourhood U of E in SO(3) such that 8 (I7) ™A = ¢,
&K —1

whence®8 (U) ( Vi {(—e)V. Since U = 8(8 (L)) and &V)
= 0&(("—\‘80) V), it follows that (V) 3 U, which proves ourassertion,

Lt £ be the contraction of @ to V., L g2V, ¢'cV, fleg')ef(V), there
exists an element » in V such that f{gg’) = f(r),i.e. g¢'r' = +e,. Bince
—eq does not belong to V¥V, we have ¢g¢'r=! # ~eo, whence ¢g" =
reV. It follows that fis a local isomorphism of Sp(1) into SO(3).

Suppose now that it would be possible fo extend f to an isomoerphism
¢ of Sp(1) with SO(3); since § and § are both homomorphisms and
coincide on ¥ which is a set of generators of Sp(l), we would have
# = ¢, which is impossible, since #{—eq) is the unit matrix.

Let IT be the subgroup of Sp(l) which is composed of the elements
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€6, —eo. There corresponds to ¢ 5 continuous univalent . homeomop-
phism #, of Sp(L}/H onto SO(3), Since Sp{1)/H ig compact, 6, ig
also a homeomorphism. Hence, we have proved

Proposition 1, Tpe group 80(3) ds isomorphic {as u lopological
group) with the factor group of Sp(1) by the subgroup composed of the
elements ey and — g,

A necessary and suficient condition for the equality 8(g) = #(g’)
to hold is that g==2q¢. If we represent g = gey - pe, + &8s 1 de;
by the point (2, b, ¢, d)283 wo sce that SO(3) is homeomarphic to the
Space obtained by identifying the pairs of antipodal $eints on 83,
Le. to the thres dimensions] Projective space. (§)

SVI. NOTION oF Covermng SPACE)

Definition 1. lopological space 4g said taf{;é locally connected if
any neighbourhood of any point P of the spaee conlains o connecled
neighbourhood of the potnt, A

Proposition 1, f 1 a locally connect@ :s\pace, erery component of an
open set 15 an open set. \®

In fact, let K pe g tomponent ef’an open get U If peK, Uisa
neighbourhood of , and thurefoj‘é« U containg g tonnected neighboyr-
hood ¥ of 5. Since K is aleemponent and v K # ¢ we have
V (K and pis interior tg K. Proposition | is thereby proved.

Remark, 1t followg immediately that any neighbourhood of a
point p in g loeally tomhetted space eontams an open connected neigh-
bourhood of the p Jl{fb

Definition 2. h

space B, 1A Sj\‘tf);%i E of B 45 sazq 1, be evenly covered by B (with, respeet
1

to f) if 7, {s@’z's ot empty and “Tery component of }' (B) is mapped
topoﬂo%k;;a‘l{y onée I by the mapping f.
S

lear that any set which ig evenly covered ig 136 facto connectod.

erty: each poing of B has o netghbourhopd whick s evenly covered by B
(with respect {o f).

It is clear that 4 SPace cannot hyve 4 COVering space unloss it is
connected and jocally '

connected, Conversely, if B is a connected
apd locally connected "pace, B admitg gt least one covering space,
Viz. (B, ¢), where ¢ i3 the identity mapping,

4 { (8, f)isq COvering space of B, fis an tnierior Mmapping.  In fact,
tef U’ be an open set, of B, and let p = J@) (with pe0) be any point of
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f(T). The point p has a neighbourhood ¥ which is evenly covered
-1

by 8. Lot V be the compoenent of P in f(V); then VT s rela-
tively open in V. Since f maps V topologlcall\ onto V, the set
AV T is relatively open in V, and is therefore a neighbourhood
of p. Since f(V T ¢ #(T), 7(T) is a neighbourhood of p, which
proves our assertion.

Lemma 1. Lel f be a continuous mapping of a locally connecied
space B into a space B.  Let p be a point of B, and let V be a ne'igkbou;r{

-1

hood of p = f(P) tn B, The component V of pin f(V) iz a neiph-

bourhood of 5 in B. (\)
A

The set Vo contains an open set I such thatpell,  We haVL pe f(Uy;
1 ~-1

let T be the component of fin f(U). Theset f (U)'la{ open because
f1is continuous: & is open by Proposition 1. Since-8f % ¥, Lemma 1 is
proved.

Lemma 1 shows that, if (B, ) is a cov ermg‘space of B, fis a local
homeomorphism, i.e. every point of B haa‘a}nclghbuurhood which is
mapped topologically by f. This conditioh, however, is not sufficient
to make (B, f) & covering space of B, as il be ehown by the following
example. Lot fi be the mapping ofs ¥ 'into T which assigns to every
xR s residue class modulo 1;ithis casy to verify that (R, fi) is a
covering space of I Let fibe the mapping of &2 into T° which is
defined by fa(z, y) = (fulghhi(y)); here again, it is casy to see that
(R?, f3) i3 a covering g 6c"of 7% Let now B be the space obtained
by removing one pointrom R?; & is connected and locally connected.
I fis the (,on'rmu’sit{ﬁ 301 f2 to B, fis a local homeomorphism and maps
B onto 77, neve thiless, (B, f) is not a covering space of 1™

Lemma 2;"\Let f be a continuous mapping of « space B dnto a
space B, Z’M +8 a subset of B which is evenly covered by B (with respect
to [, then every connected subset F of E is also evenly cabered The

co@opents of f (F) are the inlersections of the components of f (E) with
[ ).

Let , be the components of }1 (¥), v running over some sct of
indices. Set F, = E, M _fl(F) Then f Ihaps F, topologically onto

F, which proves that F, is connected. Comersely, any connected
-1

subset of f (F) is contained in some component E, of f {E): Lemma 2
is proved.
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Lemma 3. Assume that (% 1) is a covering space of the space 8.
If p vs any point of B, every neighbourhood of P contains an open con.
nected neighbourhood which is evenly covered by B.

Lemma 3 foliows immediately from Lemma 2 and Proposition 1.

Lemma 4, I J1 be o continuous mapping of a locally connected
space B, into a connceted space B, Assume that every point ped fas g
neighbourhood which is evenly covered by B, (with respect o f1). Let
B be g component of By, and let [ be the contraction of J1to, B, Then
(‘3, Nisa covering spuce of B, and B ¢y open in B,. .

We first prove that f(§) = %, Let p be a point ¢f\B, and let
V be a neighbourhood of » which Is evenly covered by @ Let 7, he

1 3

the components of f)(V), » running over g set Of Thdices & if a
set 1V, meets 9, it ig entirely eontained in B, wheneo

—1
BFUV) = Uy;{d?y
where N’ is the set of indicos » suc-h,ﬁlﬁt V, & = ¢. It follows
that, if V meets f(%), we have V. (H&®);in particular, if p is adherent
to f(8B), then p is interior to f(ﬂi}.y“It follows immediately that Fi8)
is open and closed in B, wheneeWH) = B, since B is connected.
-1 S

The eomponents of f (Fare the sets V, for v&N’, beeause each T,
’ —1

3 - 2 _'l
is & maximal cognect(qi Subset of £, (V) and, a fortiors, of f(V).
It follows that (ﬂ},, 18 8 covering space of B, The fact that & is
open follows imméd‘l\ately from Lemma 1.
Lemma 5. Asswme thay &, fisa covering space of the space .
Let % be g qamzlected and locally connecled subspace of B. If % s any
92 —1

co-mpo-n_fg:z-t_;_}f" F %), %4 relatively open in FX); i ¢ 4s the contraction
of F100E, g) is a covering space of ¥,
:Lpt.p be a point of X, and let V pe 4 open ncighbourhood of p
x:v.l{wh 18 evenly covered by § (Cf. Lemma, 3). Since ¥ is locally
<~(§rmnccted, we can find a connected neighbourhood X of # with respect
-1

to & such t}ﬁt X (V. The tomponents X, of f (X) are the inter-
—1

sections of 1 (X) with the components ¥, of 1 (1) (Cf Lomma 2).
I£ , is the point of F » which ig mapped on p by, £, 5, is interior to ¥,
1

and X, is therefore_? neighbourhood of B. with respect to F ). It

follows casily that F (%) is locally connected, and that every point of
1

X has a neighbourhood whigh 1s evenly sovered by f(X) with respect
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-1
to the contraction of fto f (¥). Lemma 5 then follows from Lemma 4.

In Definition 3, we have required the space B to be loeally con-
nected. The following lemma desecribes the situation which we obtain
if we omit this condition.

Lemma 6. Let B be a connecled and locally connecled space.  Assume
that a space B has a continuous mapping f onto B such thal every point
of B has a neighbourhood which ¥s evenly covered by B with respect lo f.
Let % be the family of subsels of B which can be represented as unions g
components of open sets of B, Then X can be laken to be the famzly
of open sets of a space B which has the same points as B.  The spaog L B

is locally connected. FEyery point of B has o ne’.’,ghbuurhood %hwh 15
evenly covered by B with respect to f. ~\

It is clear that any union of sets of X is in X and that cvery open
set of $Bisin K. Tt follows that, p, and 7, being an}‘tﬁo points of B
distinet [rom each other, there cxist sets R, andX&¥ in % such that
ek, peRe, By K,y = A\

Now, let K, and K, be any sets in X w hlt{l thave a point § in com-
mon. Tt follows immediately from Lenime’ 2 that p = f(F) has an
open connceted neighbourhood Us in B which is evenly ecovered by B
with respect to f. On the other hand we can find open subsets U of
B such that the component of pm U, is contam(,d ink (i =1,2).

Let K he the component of pdn t',e Narirte f (T75). Then K belongs
to &, containg § and is im:hﬂ;alrlecl in B,V R, This proves that
K, ™ Eaexc; the first as:“:@*ﬁwn of Lemma 6 follom, immediately from

this. Let K, be the eomponent of §in f (1/5); then K is also the
component of Ny U, O™ K. By assumption, § maps K
(considered 38 & subspace of ) tnpologwallv onto {75, Henee K,
is locally cohbected and therefore K is relatively open in K;. Taking
R, = Kg, Swe see that the topologies induced by R and B on the set
K, me:rde with cach other, and this proves that B’ is locally con-
ne€tod” Furthermore, it is clear that Us is evenly covered by P with
respbet to f. Lemma 6 is now completely proved.

&VII. SIMPLY CONNECTED SPACES. THE PRINCIFLE
OF MONODROMY

In conformity with the general notion of isomorphisim, we shall say
that two covering spaces (By, f1) and (Bs, fo) of the same space B
are isomorphic if there exists a homeomorphism ¢ of B, with 5B, such
that fl fg O ¢,
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Definition 1. A space B is said 16 be simply connected if 4t is con-
neected and locally connected and if every covering space o f B is Lsomorphic
to the irivial covering space (B, ¢), where ¢ i3 the wdentity mapping.

The word “every,” used in connection with the class of all covering
spaces of a space 8, might arouse the suspicions of & trained logician,
because the notion of *all” covering spaces involves in particulsr the
notion of all sets with a given cardinal number, We shall avoid this
difficulty by showing that, B being given, we can eonstrnet by legiti-
mate logical processes a set @ of eovering spaces of B such ?ha.t any
given covering space can be proved to be isomorphic tolone of these,
We may then restrict the meaning of the “every "»of Pefinition 1
to only those covering spaces which arc elements th,@.’

Let pobe a pointof 8. We conafruct the get Z,éofﬁposed of all finite
séquences S = (po, Uy, p, Uy, -, Uy 1) composed alterna-
tively of pointg pe and of open sots U, ang which satisfy the following
conditions: 1) the first term of §is py; 2)%00th p; and p;., belong to
Ui (0 €4 € n); 3) the last term of 805" a point. Let (B, £) be a
covering space of B; we shall provehat the cardinal number of $
is at most equal to the eardinal fnber of I, Let 2’ be the subset
of Z composed of the Sequences S = (p,, {7, o, Uy o oo py, U,
Pri1) which have the pPreperty that each U, is evenly covered by §
with rospect to £, Let fiBe a fixed point of § such that f(5o) = pa.
_H SeX’, we define p, (IS E<n4 1) by induction on % in the follovw.
ng way: ?’1‘ being' {al}jeady defined, we denote by {7, the component

of fi in f ({7x) % and we denote by 5., the point of {7, which is

mapped upon @y, by f ({7, contains one and only one point with this

Property ‘be?ca:use Uy is evenly covered). We denote the point

Pri1 by o(S7; i$ & mapping of 3’ inty % We shall prove that this

map i;ﬂ:g‘is onto B, Let  be g point of F; the point p = f(5) belongs

to atdeast one open set 7 which is evenly eovered by $ (Lemma, 3,
-1

: VT, p. 42), and the component {7 of Pin f () is open (Proposition 1,
\"\} VI, p. 40). If T meets e{Z'), it is entircly contained in e(Z).
I? faet, assume that, o(8) = fFis g point of U, with § = {po, U, py,

o, - T P Usy pagnlesy, Then p,., = f@) isin U and, r being
any point of U, the sequence Se = (p,, 17, py, Uy - o v p U,
Paty, Uy 1) helongs te Z’; the poing # — e{S,) belongs t(: 5', and
J() = 7, which PTOVes our assertion, [t ¢ ollows that every poinfj of B
which is adherent, o ©(Z’) is interior 4o (=), therefore, g;(z’) is open

and closed in §, whence e(2) = F. We conelude that the cardinal
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number of B is at most equal to the cardinal number of 2’, and,
a forttori, of 2.

We can legitimately speak of the sct of ull topological spaces
whose points are elements of 2 {sueh a space iz determined by giving
a subset A of X and a family of subsets of 4). We may therefore
construct the set of all pairs composed of a space B whose points
belong to £ and of a mapping of B into B. Finally, we may single
out among these pairs those which arc covering spaces of B; we
obtain in this way a construetible set € of covering spaces of B., Fh
follows from what we have said that any given covering space of BN&

isomorphic to a member of the set €. ¢ \~\
The following lemma. is sometimes useful to prove that a\‘apace is
simply connected: N

Lemma 1. Let (B, f) be a covering space of a S}J{If‘(’ B If B
conlains an open set A which is mapped in o univaddhiMway onto B by
f, then T is a homeomorphism of B with B. \

Sinee f is continuous and interior, the cont@c‘tion of fto A is a
hOl’IleOIn()rphlblTl of 4 with 8. Thercfore \se have only to prove
that 4 = 9B; this in turn will be establithed if we show that A is
closed in . Let § be 2 point of B wlijeh is adhcrent to A, and let
¥ be a neighbourhood of f(#) Vvhleh Iz evenly covered by % We

denote by V the component of p‘m f (Vy; both 7 and the set =4
-1

(VY are mapped t:)polog},mlly onto V by f. On the other hand,
Vis a neighhourhood \f\'p (Lemma 1, §VI, P, 41} and therefore
meets A; it lollows hat’ V™ Vo= ¢. Bince ¥ is connected, wec
have V' ( V; c,lnce\f thaps ¥ in & univalent way, we have V=7,
ped; Lemma 1 igthereby proved.

Proposition~{§~ If By and B, are simply connected spaces, the space
L1 X By dgdabéivise simply connected.

It is (}l(‘:ar that B; X &%, is connccted and loeally connected. Let
(R, ,fJ Be % covering space of By X By; hy a horizontal ftber we shall

IDEQ a component of a sct of the form f (131 X {vg}), with some

1283, by a vertical fiber, a component of a set of the form f ({1} X B},
with some 2:68R,. It follows immediately from Lerama 5, §VI, p. 42
that f maps every horizontal fiber topologically onte B, (and every
vertical fiber topologically onto B,). Let %9 be a fixed vertical [iber,
We denote by A the union of the horizontal fibers which meet B9
It is clear that f maps 4 in a univalent way onto By X B, Proposi-
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tion 1 will follow from Lemma 1 above if we can prove that A is open
in 8,

Let %, be a horizontal Giber which is contained in A, and let E be
the set. of points of B; which are interior to A.  The sct ¥ is relatively
open in B, T we can prove that E is closed and not empty, it will
follow that B = B, and that 4 is open.

Let w be any point of $; if f{w) = (vy, v2), we can find connected
neighbourhoods ¥, V3 of #1, »; with respect to B, B, respectively
which are such that ¥V, X V, is evenly covered by 8. Let-J be the

—1 . -
component of win f{Vy X Va). I (o], v5)eVy X V,, welset Vi(vh)
-1 = \

'\ —
=W ™ F(VX {o3]), Tal) = W f({e) X V) f maps Vi(vy)
topologically onto V1 X {s;} and Va(v}) onto {9 AX3Vs. Tt follows
that Vi(zy) is contained in a horizontal fiber ¥:(0;) and that E’z(v’l)
is contained in a vertical fiber Ba(p}). Thetibers B,(»5) and By(v?)
have in common the point of W which is\mapped upon (v}, v3) by f.
On the other hand, we have R2: M

1) W = Uoser. Vilah= Uurer, 7o)

Assume first that w is theJoint where 8, meets B; then Do)
coincides with B, whence §3,) ( A for all #ieV,. It follows from
Formula (1) that W ( A,Svhence weE: F is not empty.

Assume next that 4Ns adherent to B then Vi(vs) has a point w'
in common with Ei‘",\We set f(uw') = (vy, vs). We can find a ncigh-
bourhor_l)d Vs of'nwith respect to B, such that V; ( V, and that

W F({uigyX'Vs) is contained in A. If pTeV?, the horizontal
1

AS —
fiber B, (s dneets 4, whenee By(]) ( A. Theset W f (Vi X V3
= W(is'the union of the sets Vy(ol) for all v;¢V;, whence W’ ( A.
Sinee W is a neighbourhoed of w, we have wel, which proves that E
isselosed.  Proposition 1 is thereby proved.

'\

o

()" We shall now prove the fundamental property of simply connected

spaces:

Theorem 2 (Principle of monodromy), Let B be o simply connecled
space. Assume that we have assigned fo every peB a non empty set Eyp
(Ey is an abstract set, not related to B). Assume furthermore that we
have qssigned to every poind (p, q) of @ certain subset D of B X B @
Mapping ¢pe of oy tnto B, in such a way that the following conditions
are satisfied:

1) . The set D 15 a connected neighbourhood of the diagonal in B X L
(the diagonal is the set of all pagrs (p, p}, peB);
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2) Each ¢pqis a one-lo-one mapping of E, onte E,; ¢y 18 the Trlentily
MAPPING; )

3) If @uw Qor; ©pr arve all defined, we have ¢p = ¢4 O Opq Then
there exists @ mapping & which assigns to every peB an element Y(p)ek,
in such a way that $(g) = ¢p(P{p)) whenever ¢,y s defined. More-
over, if pe is a given point of B, ¢ may be selected in such ¢ way thal
Y(po)} is any preassigned element ey, of By and ¢ is then uniguely
determined. .

Let ¥ be the union of all sets {p} X Ey, for peB. We shall defing
a topology in V. Let U be the family of those subsets T of V which
satisfy the following condition: if (p, e,}el/, there exists a neighbour-
hood N of p in B such that N X ¥ ( D and {7, gopqe?,)g.(j‘for all
geN. Tt is clear that ¥ and the empty set belong to Slf, that any
union of sets of U belongs to U and that the intersectibrof two sets
of U belongs to . \%

Tet & be the mapping of T into B which is defincd by @(p, ¢,) = .
The following statements follow immediatelg'\mm the definition: if

—1 X ) -
{7 is an open subsct of B, & (U) belongs o if Jeu, a(T') is open.

Let U be an open subsct of © such that U X U ( D. Jetphbea
point of U and let ¢, be an element, ol E,; we denote by Tp, U, ¢)
the set composed of the (g, ¢p-{eal¥¥for ¢eU. This sct belongs to .
In fact, let (g, ¢sol€p)) be a poib of U(p, U, ey); if r is any point of U,
¢p0, Por and @, are defined, aud we have

, pulole) = 0 eonle)e0 (0, U, 20),

which proves our aysé}ertzion. .
Let {(p, ;) an@\{p’, et} be distinet points of V. Ifp # p’, we can
find open sebs\:z“f", 7" in B such that pel”, p'ell”, U NU" = 4.
"\ -1 -1 -1 -1

We havesld; ez a (U), (@, epe @ (U, a(U) ™ alU") =
Assume how that p = p/, whence ¢, = ¢y If €715 an open seb con-
taintng'p such that U X U ( D, the sets Gip, U, e,) and Ulp, U, e3)
belong to 4 and are disjoint because the mappings ¢pq 4re univalent.
Tt follows that U can be taken as the family of open sets in a topology
on V. Let & be the topological space obtained in this way. 1t is
clear that & is a continuous interior mapping of B onto B.

Every point p&B has a connected open neighbourhood U such that

-1

UX U ( D. Theset &(I) is the union of the sets T(p, U, ey} for
all e,8F, (because each gy, Mmaps E, onto E;). These scts are open
in 8 and & maps each of them in a univalent way onto . Tt follows
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that & maps each U(p, U, ¢,) topologically onto U. ‘?i”m s con-

nected, the sets U(p, U, ¢,) are the components of & (L7}, and T is
evenly covered by B with respect to @, .

Let B, be the component of (s, ep,) in L, and let &o be the con-
traction of & to ¥ By Lernma 5, §VT1, p. 42, (Bo, @) Is a covering
space of B. Since B is simply connceted, & is 2 homeomorphism,
We defime the mapping by N

—1
@o(p) = (p, ¥(p)) O\

Let D* be the set of all pairs (p, gleD such that ¢(g) =25, ,(&(p)), and
let (p1, 41} be any element of D, We can find opgideonnceted neigh-
bourhoods Us and Vi of i and g, such that 17,00, ¢ D, V3 X V)
CD, Ui X Ve (D Assume that Up X B hls an clement (ps, ¢2)
in common with D, i.¢. ¥{gz) = ep,n. (0 (P3N "The set T(py, U, ¢(p1))
is connected, and therefore contained D, whence

-~
(1) Y(p2) = Prp¥ (p1))

The Mappings ¢pp; Gper, €oigm B Pova, beNL defined, we have

(2) g = wpgq_.(%m(#’(ﬂa)ﬁ = ope(¥(p1)) = Pq10:{ @0, 0, ($(01)))

On the other hand, we have (by the same argument which was used
to prove {1)):

o\

3) \'\X“ ¥(g2) = ’Prrlq;:(';’((f'l))

Because ¢, ,, J8, a one-to-one mapping of Ky, onto B, it follows from
(2) and @PHhat o, ((p1)) = ¥{g1), ie. (py, qeD* Tt follows
immedis‘{eiy that D* is relatively open and closed in D, whence
D* =D

%remains only to prove the uniqueness of the mapping ¢. Let
q’e’;.:be any mapping which satisfies the same conditions as u’/ {includ-
;\i:n'g ¥'(po) = ey). Let 4 be the sct of points p such that ¢'(p) = ¢(p);
we know already that A is not empty. Let p be any point of B and
let N be a neighhourhood of P such that ¥ X N ( D Assume that
N has « point p; in common with A;then o, (' (p)) = ¢ (p1) = ¥(py)
= eus(¥(p)), whence ¢(p) = ¢/ {p). Tt {follows immediately that A4 19
open and closed in B, whence 4 = B, Theorem 2 is proved.
D?ﬁnition 2. Let © be a topological group. A local homomorphism

of & into a group H is a mapping n of a neighbourhood V of the neutral

element of & inlo I which satisfies the condition that 7(o7) = glanir)
whenever o, v and a1 belong to V.
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Theorem 8. ILet & be a simply connected topological group. Let n
Le @ local homomorphism of @ into @ group 11 If the set on which n is
defined is connecied, it is possible lo extend n (o a homomorphism of the
whole of & into H.

Let V be the get on which » iz defined.  We denote by D the subset
of ® X ® composed of the pairs (s, 7) such that re~’€V. It is clear
that D ig a neighbourhood of the diagonal in & X &. Moreover, D
may be represented as the union of the sets fa} X Vo, ce@. Bince
esch of these sets is connected (and meets the diagonal of @ X G
which is conneeted), it follows that D is connected. A

If (o, 7)eD, we denote by ¢.r the mapping e — re e of.(I\in\to
itself. 1if (e, 7), (r, p) and (o, p) are all three in D, we havey »

kY

@) = 2o = ol )a = v.sleg @)

We can therefore apply Theorem 2 and obtain a m:uﬁp%ng ¢ of & into
H such that ¢(c) is the neutral element of H agt&such that

o) = W@

whenever ro—1eV. Putting ¢ = ¢ we géc. that ¢ coincides with # on
V. The formula ¢(¢o) = ¢()¥(c)odiblds when eV, Since © is
conmected, every pe® may be weiften in the form & -+ - & with
£F (1 £1 < h) (this followsl‘eaéily from Theorem 1, §IV, p. 35 if
we ohserve that ¥/ V-lis ameighbourhood of ). An easy induetion
shows that vV

&
&(h",','\i'kff) = () - - o)

Putting ¢ = ¢, Wetket y(p) = (fn) * - - ¥{5), whence ¥lpw) =
YV (o) ¢ is o Hmlomorphism. Theorem 3 is thereby proved.

Scholiuxg\:,, ot & be a simply connected topological group. If a
Cﬂ'nn-ected‘iqp}logical group ®, is locally dsomorphic to ®, &, s tsomorphic
fo the fadtor group of & by a discrele subgroup of the center of ®.

L2t™ be a local isomorphism of a connected neighbourhood of the
neut¥dl element € of ® into ®;. Then 5 can be extended to a homo-
morphism ¢ of ® inte ¢h. Because ¥ is a homomorphism and is
confinuous at the neutral element, ¢ is continuous everywhere.
(Cf. Proposition 5, §III, p. 35.) The sct ¢(©) is a subgroup of &
and contains a neighbourhood of the neutral element ¢ of &;; &
being conneeted, it follows that ¢(®) = & (Cf. Theorem 1, 8§IV,
p. 35). Because y maps a neighbourhood of ¢in & onto a ncighbour-
hood of ¢ in ®;, ¢ maps any open sct cnto an open set. [t follows
easily that ®; is isomorphic to ®/K, where K iz the kernel of .
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There exists & neighbourhcod of ¢ in & whose intersection with X
contains only e; therefore K is discrete. The fact that K belongs to the
center of & follows from

Proposition 2. A discrete distinguished subgroup K of a connected
topological group O belongs to the center of ©.

Let x be any element of K. Let N be a neighbourhood of « in &
such that ¥ ™K = [«}, and let V be a neighbourhood of ¢ in &
such that V«xV—' ( N. Because K is distinguished, we have gro~! = «
for all egV. The elements of & which commute with « form’a “l\bgl "oUp
&' of ® which contains V. Since & is connected, we ha\e G =@
Proposition 2 is thereby proved. \

N

&VIIL. THE POINCARE GROUP, COVERING GROUPS
\

Let 8 be a space which admits a simp]y connected COVEring spuace
(i.e. a covering space (B, /) such that B ;s%}mpb connected). Woshall
then prove that this eovering S'pace m‘&mque except for isomorphisms.

We must first prove

Proposition 1. Let B be g\ se?n;aly connected space. let B be a
space, and assume that (B, 1LY s a covering space of B. Let ¢ be a con-
finuonus mapping of I inte] % Then there exists a continuous mapping
¢ of W into B such thal™ = fO ¢ If wo is a point of L& and if Po
s eny point of B suqh that f(Po) = po = elwd), & may be consiructed
80 as to map wupow Pa, and is then unzquely delermined.

Let %1 be thc\& of pairs (w, §)e X B such that e(w) = j(p). The
contraction4n.&, of the projection of I X B onto W is o continuous
mapping l}; f %, onto 8. If wEdR, we ean find a connceted ne1gh~
170111th&E of p = ga(w) in B which is evenly covered by B; let V.

berthie components of f (V), » running over some sot of indices. Let

W be a connected nelghbourhood of win W such that «(W) ( V;if

d Jw'eW, we denote by & the poing (', ), where p,, is the point of ¥,
\ ) defined by f(p.) = o{w’). The mapping v — i maps W continu-
ously upon a subset W, of ¥, and ¢,(&) iz the point w'. It follows

that ¢; maps W, topologically onto W. The set y!/l(W) is the union
of the sets W,; if W’ is any connected subsct of t)'x (W) the mapping
(w, §) — 7 maps W' onto a connected subset of f (V), ie. upon a

qulbqet of some V.. It follows that tho sets W, are the components of

¥ (W) and that W is evenly covered by %1 with respect to ¢y
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Let X be the component of (w,, o) in ¥5, and let ¢ be the contrac-
tion of ¥, to ¥. By Lemma 5, §VI, p. 42, (%, ¥) s a eovering space
of 78, Since T8 is simply connected, ¥ is a homeomorphism. We

-1

can now define @ by the formula ¢ (w) = (w, #{w)). It is clear that
& has the required properties. The unigueness of & will follow from

Lemma 1. Assume that (B, ) is a covering space of a space B.
Let ¢, ¢ be continuous mappings of o connecled space L into B such
that foo =FfO ¢ If ¢lw) = ¢ (wy) for at least one point we, then\
e=¢.

Let A be the set of points such that o(w) = o'(w); 4 is clebrly
closed and not empty. Lemma 1 will be proved if we can showthat' 4
is open. If wed, then v = flo(w)) has a neighbourhood JA which is

4 ol —1
evenly covercd by %K. The component V of o(w) = Jlw) in (V)
is a necighbourhood of (w) in B (Cf. Lemma }, ~§§}I, p- 41). It
follows that there exists a meighbourhood W ofsg'in 2B such that
oW (¥, o' (W) C V. Because [ maps ,f’f\\t’opologically, w'eW
implies o(w') = ¢ (w'), whenee W ( A: Lemina 1 is proved.

Remark., The statement of Proposition™] is to a certain degree
similar to the prineiple of monodromys *In faet, Proposition 1 can
be deduced from the principle of miencdromy in the case where we
assume that I8 is normal. .f;’o )

Let now (B, 1) and (&', £)\be simply eonnected covering spaces
of a space B. Let p be a'pm)‘nt of B, and let g, " be points of &, Y
respectively such th&t\)ﬁ(’ﬁ) =p, J(F)=0p By Preposition 1,
there exist continuous mappings; ¢ of B into ¥, and ¢ of B into B
such that N\ <

Foomf fod =1 e =0 oW =P
Then, ¢ C}‘> is a continuous mapping # of ¥ into itself such that
f0 8 =3und §(p) = p. By Proposition 1, 8 iz the identity mapping
of %‘* “In the same way, we sce that ¢ © ¢ is the identity mzipping
of & Tt follows that ¢ is a homeomorphism and that ¢ = o We
have proved

Proposition 2. If a space B admils a simply eonnecled covering
space, il admits only one (cxcepl for {somorphisms).

Tet us furthermore apply our previous considerations to the
cagse where 8 = &/, f = f. We see that, if §, $' are points of 8
such that f(p) = f(p"), there exists a uniquely defined homeomeorphism
@ of B with itself such that fo ¢ = f, ¢(B) = 7.
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Definition 1. Lel ¥ be a space which admils a simply connecied
covering space (B, ). The group of those homeomorphisms ¢ of B with
itself such that f© ¢ = f is called the Poincaré group {or fundamenial
group) of B. .

The Poincaré groups of any two simply connected covering spaces
of the same space ¥ ave isomorphic (as follows immediately from
Proposition 2).  If we think of the abstract group which is isomnorphic
to the Poinecaré group of any simply connected ecovering space, we call
this group the Poincaré group (or fundamental group) of B. »We Lave
proved .

Proposition 3.  Assume thal the space B admits a sighply connected
covering space (B, f). If p, P are points of B such Yot f(ﬁ’) = f(p),
then there evists a uniquely determined operalion qf»i‘!’;e FPoincaré group
of B which maps P upon §'. N

Lemma 2. Let B, Bs be two spaces; asa-u-me}b??ai (B, 1) is a covering
space of B (0 = 1,2).  Ifwesel f(5),72) = Jld0), fo(B2)), then (By X By,
F) ¢s a covering space of By X B, o \ J

Let » = (01, v2) be any point of B, By, We can find a neig}j-

bourhood ¥V of #; with respect to\B: which is evenly eovered by B
—1

(i=1,2). If T:is any cofpénent of ;(Vy) (i = 1, 2), / maps

Vix ¥, topologically ont.(f;Vl X Vi The set ¥V, X I}z, being con-
* -1

:

nected, Is contained in a“omponent, ¥ of F (V1 X Vy); the projection
— Lt - & ~ _}'
of By X L: onto Bivmaps ¥ into a component of f, (V,), whenee
-1

- . . '\ .
V="x Va, .\Any point of f(V, X ¥z} belongs to a sct of the
E:)lrm vy X Kait follows that the sets ¥, X V; are the components of

AS
7, ' Y% and l-hatyVl X Vg is evenly covered by &, X §, with
respeeb o f. Bince BiX B, is connected and locally conneeted,
Le\?r{ 14 2 is proved.
&\ Proposition 4. Assume that the spaces Bi, By both admil simply
m;’“\cbnne.ctrad covering spaces. Then By X By admils a simply eonnccied
9 covering space and its Poincaré group s womorphic o the product of
the Pamcgré groups of By and B,
Let (3B, f) be a simply connected covering space of ¥; (¢ = 1, 2).
If.we define the mapping f as in Lemnma 2, (B, x By, f) is a covering
space of By X By, and is simply connected by Proposition 1, §VII,
p. 45. Let F; be the fundamental group of (B, f) (z = i, 2); 91
@:&Fy, the mapping o of B, X B, into itself defined by @(Fy, F2) = ’(ﬁpx(ﬁl):
¢2(2)) clearly belongs to the Poincaré group F of t%_‘l ><, By, f). The
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mapping (p1, ¢2) — ¢ is easily scen to be an isomorphism of Fi X Iy
with a subgroup of F.  If (b, 72) and (8, #,) are any points of B X By
such that f(§y, #2) = (5}, #;), we have f(fy) = fil5Yy (=1, 2), and
there exists an element @€F; such that off;) = #. The operation ¢
of F which corresponds to (@1, ¢2) maps (71, #z) upon (5, ). Taking
Proposition 8 into account, it follows that the mapping (o1, @a}— ¢
maps F1 X Fa onto F.  Proposition 4 is proved.

et us now consider the notion of a covering space In the case
where the space which is covered is a topological group. )

Definition 2. Let ® be a topological group. By a covering group of\
0, we mean g puir £(§'), I} composed of @ topological group & and(ofa
homomorphism f of & into & such that (®, f) iz ¢ covering space o\

Proposition 5. Assume that a lepological group & hag\a simply
connected covering space (&, f). It is then possible to defindna multiphi-
cation in & which turns the space @ inlo a iapolog-icql'\fﬁ‘bup and the
covering space (8, ) into a covering group. \/

Let ¢ be the nentral element of &, and let g é{e; any element of &
such that f(§) = e. The space & X @ ig sigxgly connected (Proposi-
tion 1, §VII, p. 45); by Proposition 1 aboye, there exists a continuous
mapping ¢ of ® x & into & such ’th'at' fle, 7)) = @ FEN
o3, & =& We have fle(G, ©) =&} and ofs & =& Making
use of the uniqueness statement ig Proposition 1 {applied this time
to the mapping & — f{¢(F, &), Wwesconclude that ¢(7, &) = §. Weset

= sa('éx\:ﬂ 7 = o3, 7

whenee f(771) = U(?))Tl,\f\(&?) = f(5)f(#). Making use again of the
uniqueness statemert in Proposition 1, we derive easily the formulas
(7¥)p = #(73), &E,\'L—: % — #. The continuous maPping & — 7! maps
the eonnect Zts\ﬁé.ce & into the discrete space f (¢) and maps & upoen
itself, wheedes—! = & in the same way, we would prove that §7'¢ = &
It follg.n\véi"that our law of composition (&, 7} — &7 turns & into a
topgoflbgidal group: Proposition 5 is proved. _
He law of composition which we have defined in & depends upon

the choice of & Neverless, we shall prove

Proposition 8. .. If o topological group admils a simply connected
covering group (@, F), this covering group is unigque except for isomor-
phisms; i.c. if (&, f') is an other simply connected covering group of O,
there exisis an isomorphism 8 of the topological group & with & such thal
f=roe o

Let & , € be the ncutral elements of &, &, & respectively. We
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can find neighbourhoods ¥, 77, ¥ of & &, e such that the contraclions
of £, I to V, T ave local isomorphisms of thoﬁse setsqwith V. Ii
follows that we ean find a local isomorphism 6 of V with V' and a local
isomorphism 6° of 7" with ¥ such that ¢’ © # and 8 © ¢ are the identity
mappings of ¥, 7’ respectively and furthermore such that #og
ecoincides with f on ¥. By Theorem 3, §VII, p. 491.6 and B: may bo
extended to homomorphisins of & into & and of & into & respec-
tively; we shall also denote by 6, #' these extended homomorphisms.
Because V, V' are sets of generators of &, @ respectively (Theerem 1,
§TV, p. 33), & 0 6 and ¢ © § are the identity mappings ‘of & and &
respectively. It follows that 9 is an isomorphism of 8 {considered
as a topological group) with &, Moreover, since f and’f" © 6 are both
homomorphisms of & into ®, they coincide every\s{h;ii"e. Proposition 6
is thereby proved. R4

Proposition 7. Assume that the topologicabgroup © admils a simply
connected covering group (G, f). Then Jhe Poincaré group of ® is
tsamorphic to the kernel of the homo-mm;g}iﬁﬁz I in particular, this group
is abelion, O

Let D be the kernol of f; if ‘EE’D}’the left translation ¢s associated
with §1in & ig 4 homeomorphis‘m of & with itself such that foe =1
1t follows that ¢; belongs tothe Poincaré group of (&, 7). Making use
of Proposition 3 abova, w;‘:;éee easily that the mapping 6 — ¢ is an iso-
morphism of D with/she Poincaré group of (@, f). Proposition 7
then follows from’&bposition 2, §VII, p. 50.

§IX. EXISTENCE OF SIMPLY CONNECIED COVERING SPACES

Deﬁnitio\n,'l. A space B is said to be locally simply connected if
every point of B has at least one stmply conneeled neighbourhood.
‘Ops;gtz ¢ that we do not require that every neighbourhood of the
pou\{t\should contain & simply connected neighbourhood.
‘}:A locally simply connected space is of course ipso facto locally
~tonnected,
QO : ~ Theorem 4. . Let B be a connected and locally simply connected space.
Then B has a simply connecied COvEring space.

We sclect arbitrarily a point s,ef. By a specified covering space
of ¥ we shall mean o triple (fﬁ, 8% f) such that (ETS, f) is a covering
space of B and #° 18 a point of R with J() = vo. Two specified
covering spaces (%, % f} and (B, f1) are sald to be of the same
type if there exists g homeomorphism y of § with B, such that fy 0
= fand (0" = %, We know that we can construct a set of covering
spaces of B such that every covering space is isomorphic to one of
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them: it follows easily that we can construct a eomplete system of
representatives (B, 52, f.) for all types of specified covering spaces
(« running over some seb of indices). Let %1 be the subsct of the
product space 1.8, composed of those elements x = (- -+ ¥ © - °}
for which the fa(7.) ave all equal; if z&¥;, we denote by f*{z) the
sommon value of the elements fu{f.}. It is clear that f* is a confinu-
ous mapping of ¥; onto ¥ and that the point 2° = (@
heluongs to X1

Let 2 be a point of B, and let ¥ be & simply connected neighbodrs

—1

hood of . We denote by V.., the components of f. {(V),» runnigg bier
a seb of indices N, which depends on o Tt follows im#figdiately
from Lemma 5, §VI, p. 42 tht fa. maps each Ve topolpgii,pé;lly onto
v, AN
Now set Z = 1Na: if {82, we denote by {(a) the"g\wﬁoordinate of ¢
and set !
Ve=%" Hava.s”(a)’:’\\:

Let f; be the contraction of f¥to V.. I Ga)clear that f; is univalent
and continuous. On the other hand, N# peV, the a-coordinate of
-1 <N N

e (2} is the point of 7 ¢t which is mapped on v under f.; this point is &

Y -1

continuous funetion of v, and it fellows that fr s continuous. There-
fore f; iz a topological mapgig of V; onto V. In particular, we see
that V¢ is connectod. {{éar Y,

_..1 -
o) 7 =V T
If we assignj‘[trévery:c = P - ¢¥, the element g: (2} = Pa.
N\ ~1

wo obtain‘o%nhntinuous mapping ga of ¥ into ifi,; The sot g, (Ve
is the union of the sets ¥y for which t(e) = » If Kisany component
_1' .\.0 : _ -1 l
Uq*}(l”), g (K) is a connacted subset of fo (V) and is therefore con-
T
tained in some V.. Tt follows that each Vi is a component of f*(V)
‘..:l _ .
and that the components of g, (Va,,) are the scts V. such that g(o:) =
From the facts that f; is a homeomorphism and thal fa and g, are con-
tinuous, we deduce casily that g: maps V; Lopologieally onto Veaptal
Let ¥, be the space which has the same points as %1, and, for open
sets, the unions of components of open sets of %1 (cf. Lemma 6, §VI,
p. 43). Then X, is locally connected. lLivery point of ¥ has a
neighbourhood which is evenly covered by ¥; with respect to I
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every point of 8, has a neighbourhood which is evenly covered by %)
with respect to g,. Let ¥ be the component of z° in %1, and let f
and g, be the contractions of f* and g to %. T_l'nen (X, f) is a covering
space of B and (¥, g.) is a covering space of B, (cf. Lemma 5, §VI,
p. 40). Theorem ¢ will be proved if we can show that X is simply
connected. _ .

Let (X, ¢) be a covering space of ¥.  We shall see that (X, foe
1s a covering space of L. Let x be any point of ¥, and letJA be a

simply connected neighbourhood of f(z) in . Denote, b\y ¥ the
-1 {

component of x in f (V}; then it follows from Lemma,;l\a.rfd 5, §VI,
p. 40 that V is a simply connected neighbourhood. 6f+z in X and is
therefore evenly covered by £ with respoct to ja;? This proves our
assertion. S

Let % be a point of % such that ¢(3") =%% Then (%, %, fo @)
15 a specified covering of %, and, as such i is of the same typo as
(&, 52, f.) for some . There exists a hdmeomorphism A of B, with
¥ such that (fo ©) Ok = foand R(ENG #°. Wesety = g0 h; then
(Bs, ¥) is a covering space of %. We'have y(3%) = zoand foy = f..
In order to prove that ¢ is 2 hqr;iéomorphism, it will be sufficient to
prove that ¢ is 3 homeompr[;l'ﬁsm. The mapping g, © ¢ maps B,
continuously into itself, “and we have f.o0 (g, o ¥) =foy =1,
{92 O ¥)(7a) = 5o By Bethma 1, §VIIL, p. 50, it follows that gl oy
is the identity mapping of %a, which proves that ¢ is univalent.
Since (8., ¢) is a ‘overing space of ¥, it follows that ¢ is a homeo-
morphism, Thepem 4 is thereby proved.

$X. THE)POINCARE GROUPS OF SOME SPECIAL SPACES

Propesifion 1. The additive group B of real numbers is simply
conm?\ N

_ Bel'(R, f) be a covering group of . We can find & neighbourhood

LY of the neutral element in £ which is mapped topologically by f

\upon an interval |—a, +aof in 1 (wit? a >{). Because fis a homo-

morphism, the elements of f”‘\ f—0/2, +a/2)) commute with
each other, It follows that & is abelian; we shall write the law of
composition in B additively. T.et d be an element of B such that

fidy = 0; we may write d in the form d; + - - - + 7, with del
(1< z’.{:_ k). Set f(d) = di; we have dib-" v« by =0 Letk
be an integer such that o=y + - - - 4+ 3)| < ¢ (1 <¢<h), and

lef; i be the element of ¥ which is mapped upon £~'d; by . Because
[ 18 a local isomorphism, we have f@&+ - 8 =fE)+ - -
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+ /(&) = 0, whence &, + - -+ + & = 0 (where 0 is the neutral ele-
ment of £).  Again because fis a local isomorphism, we have d; = k&,
whenee d = d; = k=% = 0. This proves that f is univalent. Propo-
sition 1 is thereby proved.

Lemma 1. Assume thai (B, f) is a covering space of the space B.
Let A and B be two closed, connected and locally connected subsets of B
whieh are both evenly covered by B with respect to f. If A DB s

connected and not empty, the set A B 1s evenly covered by B.
—1

Let A, be the components of f(4), » running over some seb of
indices N (we assume that A, = A, for v v). Set € = 4 XB,
-1

Z, M f(C) = §,; we know that f maps A, topologically ofite A
it follows that f maps {, topologically onto C. [n partic@ly, C, is
connected; as sueh, it belongs to a uniquely determineggc:)mponcnt

= —1 - <)
B, of f(B). Tt is clear that B, == B,, for » # »Qand that every
-1

gompont:nt of f (B) occurs among the sets B,. }E’Zg\\sét}?, =4, ? "
L,=U ,,#,K,,; R, is clearly & closed set. W’c,\have B =UU,.. 4.)
N\ il

w (U, B,); we know that 4,1 relati,ve.ly’open in f(A4) and that
-1 X

B. is relatively open in f (B) (Cf. Lefitma 3, §VI, p. 40). Tt follows
that the sets Uy A, Uer Bu, afith therefore also L,, are closed.

Because K, L, = f(A...\ié B), K, is relatively open and closed
-1 'i.,t -

in f(4 B). Tt foligws that the sets K, are the components of
_1 N\

f(4B). Iff,is {Jﬁe nontraction of f to K,, (K., f,) is a covering
space of 4\ B (Leémma 5, §VI, p. 40). On the other hand, f, maps
E, in a univalent/way. In fact, assume that f(p) = f(B), with 7,
ek,. 1f p‘;@’"belong to the same one of the sets 4,, B,, we have
clearly # =\p; if not, we have f(P) = f(p1eC and again P = 7
beeauge fi'rhaps. both A, and B, in a univalent way. 1t follows that f
maps K, topologically onto 4« B: Lemma 1 is proved,

Proposition 2. Any interval in R is simply connected.

Let us consider first the case of the half-open interval, B = la, b]
(where @ < b). Let (B, f) be a covering space of B. There is then
some closed neighbourhood [e, 8] of & evenly covered by B. Now
la, b lis homeomorphic to R. It is casy to see that Ja, b [is evenly
covered by B. Select a ¢ such that ¢ < ¢ <b. Then la, e'] is
evenly covered by . The set Ja, €17 e, b8 = [¢, ¢'] is connected
and not empty. Therefore, using Lemma 1, we see that & is evenly
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covered by B, Tt is then casy to see that B is simply convnected. A
similar argument now applied to e instead of & shows that [e, b] is
simply connected. DProposition 2 is proved.

Corollary. The product of a finite number of inlervals in R is stmply
connected,

1t follows that an open or closed ball in B* is simply connceted
(the open bull of center p and of radius r is defined to be the set of
points whose distances from p are <r; the closed ball is the adherenee
of the ‘open ball). O

Proposition 3. The Poincaré group of 8 is isomorphic o {fw addrtive

group of integers; of n > 1, 8™ 43 simply connected. A

'\

S' i3 homeomorphic to 77, which is the factor gromp of R by the
group of integers. Sinee K is simply conneeted,ﬁi’é Poincaré group
of 1 is isomorphic to the additive group of intp&eﬁ‘é (Cf. Proposition 7,
§VIIL, p. 50). If n > I, we denote by Aapd B the subsets of [+
defined by the conditions

A Tapr 2 0, _zEHEr o g
B: Top1 S0, AN =1

The mapping (z;, + - -, z,, aap) = (21, © ¢+, 2,) maps A and B
topologieally onto a closed ballin R»; it follows that 4 and B are gimply
connected. The set A QNG is homeomorphic to 81 which is
connected for n > 1. MProposition 3 follows therefore from Lemma L.
Proposition 4. ) Be® be a connected and locally connected topolegical
group, and let @'\Ex;'a closed locally connected subgroup of ©. Let Do
be the componewhof lhe neutral clement in $. Then there exists a mapping
S of O/Duitits"®/D such that (G/S, 1) is a covering space of &/9.
IfS s diStehguished, (8/9, f) is a covering group of &/ 9.
. Sineeld is locally connected, we know that §, is relatively open
111‘:§§(“Propositinn I, §VI, p. 40). 1t follows that there exists a
neighbourhood V' of the nentral element in @& such that V-1 < $

{ Do We may assume without loss of generality that V is open and

connected.

Let'u': and & be the natural mappings of & onto ©/9 and G/
respectively. If we®/$y, u is a coset modulo Do, say v = oPy; this
coset is entirely contained in the coset o modulo . If w = ¢, we
set w = f(u}). Then f is a mapping of §/Hy onto ®/H. Since @
and _a:o are hoth continuous and interior, it is easy to see that fis
continuous and interior,

I t.‘.fe@, we set Wio) = @(cV), We select a complete get of repre-
senfatives A for all cosets of § modulo Ho; we have § = Uses89e
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—1

The set f{W{(s)) is the union of the sets Wslo) = @{eVe), ea. Each
of these sets iz mapped onto W{s) by f. The sets Wi{e) are mutually
disjoint and each of them is mapped in a univalent way by f. In
fact, assume that &(orif) = a(orad)), T,reeV, §,5eA. We have o718
= gred'y, n€SH, whenece 17y = 878 L  On the other hand, &%é™!
belongs to ©, whence 731V V 7 8 Do If we assume & = &,
we see that 189, {we know that $a is a elosed distinguished subgroup
of §; cf. Proposition 1, 81V, p. 35), whence &(omid) = @olareb),
which proves that each Wi(y) is mapped in a univalent way. If; 6>
the other hand, we assume that Solom18) = Golomad’), We ha.ve.ng@o,
whenee 8'né~188 Pos—t = (5 Hed1(8071) = Sob'§7Y; we therefate have
$od’ 81 §y 7% ¢, whence s = 6. This proves that the schs Wils)
are mutually disjoint. O

Tach W,(o) is open in &G/ D; thercfore f maps ‘}"T(ééa) onto Wia)
in a continuous, interior and univalent way, i.e. topelogically. Since
each Ws(o) is connected (it is & continuous imzy@ of ¢V3), we see that

1 ?

the components of f (W(s)) are the sets }‘mc}). If follows immedi-
ately that (8/Dq, ) is a coviring space NB/ .

Tf § is a distinguished subgroun wof ‘&, o is also distinguished.
Tn fact, if oe®, oot 18 & connggi‘;ted subset of § and contains the
ncutral element, whence oo 00 Do, Furthermore, the mapping f
is clearly a homomorphism.of ®/$, onto &/9. Proposition 4 is
thereby proved. o)

Corollary 1. The hotation being as in Proposition 4, if &/ s
simply connecled, thew™ s connecled.

in fact, il &/ ¢33 simply connected, f must be univalent, whence
D = %o e\l

Corollary (2" Let @ be a connecled and locally connected topological
group. LIND is o discrele distinguished subgroup of &, and of fis the
naturabdpapping of @ onio 8/, then (®, f) s a covering group of §/9H.

"USL?lg the notation of Proposition 4, it is clear that &/Ha = &
anfuthat the mapping f which has been construeted in the proof is
the natural mapping of @ onto &/9D.

Proposition 5. Let @ bea connected and locally connected topological
group, and let § be a closed locally connecied subgroup of B Assume
that &/ is simply connected and thal © aend § are locally simply con-
nected.  Then the Poincaré group of & s isomorphic o o factor group
of the Poincaré group of ©. ~

Let (B, ¢) be a simply connected covering group of ®. Weset

-1

= g (); it is clear that ¢ maps cvery coset of & modulo § onto a coset
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of & modulo $ and maps two distinct cosets onto two distinet cosets,
Let & and & be the natural mappings of & and & onto &/$ and 8/
respectively; we see that there exists 2 univalent mapping g* of /9
onto &/%$ such that _
g*@(®)) = a(g(@) (Fed)

From the fact & and & are continuous interior mappings, it follows
immediately that g* is also continuous and interior. Therefore g*
is a homeomorphism, from which we eonclude that &/ igagitaply
connected, A

The group § is locally connected. In fact, let ¥ be ateighbour-
hood of the neutral element z of & which is mappe(i‘to;ﬁolngically
by g. The set g(7) ™ § contains Iocally connec\t&(}l" neighbourhood
W of e = g(&) with respect to . The set f\f\“ g (W) is homeo-
morphie to W, and thorefore locally connduted; this set being a
neighbourhood of & with Tespect to E}, our gsgertion is proved.,

It follows from Corollary 1 to PropoSition 4 that  is connected.
Let go be the contraction of gto ;s fo]Tows from Lemma 5, §VI, p. 40
that (§, go) is a covering group of §)"

The Poincaré group of & issisomorphic to the kernel F of the
homomeorphism g, and we ha’\j}e::{;" ( & Let now {®1, g1) be a simply
connected covering group 9. It is easy to sce that we can find
a local isomgrphism 7 of 4, connected neighbourhood W; of the neutral
element of §, into 2 aeighbourhood of the neutral element of & such
that go(5{p)) = 4 ’Q'fér all peWy. By Theorem 3, §VII, p. 50, we
can extend 5 to g h momorphism & of §, into $. The set of elements
pEDy for which wilA(p)) = g1{p} i3 a subgroup of $; and contuing W
by Thec)rem: N 3LV, p. 35 it follows that this set coincides with B,
whence.ﬁg{aﬂ R =g Let Fy and IT be the kernels of the homomor-
phismis gt and respectively; the kernel of go being F it is clear that
F i:s'lt‘s}morphic o Fy/II Sinee F, is isomorphie to the Poincaré group
ob 8, Proposition 5 is proved,

\m ™ Tt follows immediately from Propositions 3 and 5 that the Poincaré
groups of 8O(n} (for n 2 3), SU(n) and Sp(n) (for n > 1} are isomor-
phic to factor groups of the Poinearé groups of S0(n - 1), SUM — 1)
and 8p(n — 1) respectively (Cf. Propositions 2q, 3, 4, §IT1, p. 29).
The group § U'(1} contains only one element and is therefore simply
conneeted. The group Sp(l) is isomorphic with g3 and therefore
simply connected. Thys:

Proposition 8, 7T, groups SU7(n) end

; o Sp(n) are simply connected
oreveryn 2 1.
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The Poincaré group of SO(3) is of order 2 by Proposition 1, §V,
p. 35, Therefore, for every » > 3, the Poincaré group of 80(n) is of
order either 1 or 2; we shall prove in the next section that this group
is actually of order 2.

We pass now to the consideration of I/(n). We represent by p(e)
the matrix

=
i
/

0 0....1 N
The matrices of the form p(p) form a subgroup g of B{n) which is
isomorphic with 7. Let ¢ be any matrix of By, then H is of
absolute value 1, and therefore there exists gpamber ¢ guch that
o = p(g)r, reSU(n). Since g ST (n) contdin® only the unit matrix,
every os¢U(n) may be written in one anthonly one way in the form
¢ = pr, pgg, 7e8TU(n). The mapping {p,o7) —pr of g X SU(n) onto
[’(n) is continuous and univalent seditice g X S U/(n) is eompact, our
mapping is a homeomorphism, and, we have proved
Proposition 7. The mder}yz’ﬁg’r space of Un) is homeomorphic fo
T % SU(n). The Poincagéroup of TF(m) is isomorphic to the additive
group of tnfegers. \\
§X1:’THE CLIFFORD NUMBERS.

Let K be a, ﬁfgid of characteristic #2. We shall construct an
algebra o ovejﬁ\‘;k, which will contain a unit element ¢o and which

will be gen‘{%‘ite'd by ¢ and by n other clements e, *+ -+, €a (Where ©¢
ig any i;l;t@ger >0) such that the identity

~ J (Sraw:e)® = —enShati
hoﬁs for any 1, - + * , T.€K; l.e. we ghall have
(1) eves = e; eyl = €i€q = €i} e + eee =0 (7 5% 7)

_ = —e (€458 M

Tt follows casily that every element of o will be a linear combination
of ¢y and of the products e, * = * €, with ] i< - <ip SN

We now proceed to the actual construction of 0. To every subset
A of the set N = {1,2, - - -, n} we associate a symbol es, and we

consider these symbols ¢4 as forming a base of a vector space over K,
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This vector space has therefore the dimension 2°. If 4 and B are
two subsets of N, we denote by 4 + B the set of those elements which
occur either in A or in B, but not in both. If jeN, we denote by
(4, 7) the number of elements 7e4 such that ¢ 2 4§, and we set
p{4, B) = Zzsp(4,§) (4, B) = (—1)pa®
We define the multiplication of the basic clements e, by the formuyls
eses = {(4, Blears N\
We shall prove that this multiplication is associative. Aeb £ be the
field of characteristic 2 with 2 elements 0 and 1; if 4 & \;7\?, we denote
by fi the mapping of N into § defined by f,4(2) =t ied, fu(7) = 0
if £ doos not belong to 4. Since 7 + 1 = 0, we'h‘é"tfe fazs = fu -+ fa
whence fuyaic = Jot+fo 4 fo = farmse a{lj{(.:’l + B+ C=4+
(B4 O). O
On the other hand, we have O
P, B+ C) = Jesrop(d, §) = p(A B + p(d, C) (mod. 2)
(4 + B, 0) = Zeep(A + B, DEPA, C) + p(B, €)  (mod. 2)

A,

and it follows that (eses)ee and ¢y (pzec) are both equal to
{4, BYEEOR(A, Oewunrse.

We have therefore deﬁi;é’d an associative algebra o over K. If we
seb ey = €4, €; = ey (L <Y < 1), we have
Ca = &, " - g mi‘lf Ar—{il,"',fm}, 1< - L
and the formul(fZ)’ hold.

'The elementsvof the algebra o are called the Clifford numbers.

Now we.shéll determine the center of o and the ideals in 0. To
every MAINSR € n) we associate the linear mapping @ of o into
ltself.,,@?ﬁﬁed by Qu(z) = ¥z — esme)). We shall compute Q.(e4);
deyx(sing by s(A) the number of elements in 4, we find easily that:
NIF s(4) =0 (mod. 2), then @les) = 0 if ksd, and Qrles) = €4

i % does not belong to 4;

if s(4) =1 (mod. 2), then Qu(es) = e, if hed and Qnles) = 0if
does not belong to A.

Let @ be the linear mapping Q,0 - - « o Q.. If n =0 (mod. 2),
we have Qes) = ey, Qle) =0 for A =g, tne=1 (mod. 2), we
han{ Qlea) = o, Qlex) = e, Qles) = 0 for A =< ¢, N. It follows in
partieular from this that ey belongs 16 the conter of pif n = 1 {mod. 2).

Let ¢ be the center of 0. If xet, we have Qu(x) = z for every h,
whence Q(z) = x. It follows immediately that ¢ = Keg if n 15 even,
and ¢ = Key + Key if n is odd.

Let now a be any ideal {0} in o, and let & = Z,c4e4 be any
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clement # 0 ina, Assume that ¢s, > 0; then it @ = Zaces belongs
to a, and the same holds for Qlesix). Wehavec, = 0. Jin is even,
we have Q{e1xz) = cyee, whenee g€ and therefore ¢ = 0. We have
proved

Proposition 1. If n 23 even, the center of the algebra of Clifford
numbers is Keo (where K is the basic fieldy. The only ideals in the
algebra are (0} and the whole algebra.

If n is odd, then Qezx) = oo -+ chey. Tt is casy to sec that
¢% = (—1)nrnrz, ot (—1)~~t12 is not a square in K, the centex
¢ = Key - Key of o is a field; since a M ¢ g an ideal # {0} in cpapce
have a /¢ = ¢, whenee a = 0. Assume DOW that (—1)»T02EG2,
j¢K. Then the elements % = ey + jex) and v = ${e —yjew) are
orthogonal idempotents In ¢ (le. u? = u, ¥ = W =“,9)","‘~and we
have ¢ = Ku + Kv. The ideals = {0} in ¢ are Kuwﬁ.{u'and e. Tt
follows that o contains one of the clements u andda\Assume that a
contains u; if there exists an elernent y&a such thatyr = yv # 0, then
oM ¢ contains Qlegr) = Qen,y)veKy (obser & that » belongs to the
conter, whence Q(zv) = Q{2)v for every z). b lollows that, if uee, we
have either a = {0} orav = {0}, In the talter case, we have clearly
a4 = pw. We have proved ONP

Proposition 2. If n ds odd, the cenidr of the algebra of Clifford num-
bers is Keo + Kex. IF (— _l)“(""ff"‘iis not a square in K, the only ideals
in o ave (0} andv. If (—-1)‘”"‘\(‘?"“”2 = 2, jeK, the ideals in o are {0},
o, ou aind ov, where u = kg jex), v = Fleo — dow).

If xgp, the mappingj\y — B(x)y = xy is a Jinear endomorphism
of the vector space g ever K. After having arranged the basic ele-
ments es in a cc}“tziﬁl order (in an arbitrary way), we can represent
this endomorphi;aﬁ"by o matrix of degree 27; we shall also denote this
matrix by 6(@; ' We obtain in this way & representation of the algebra
0 by matzlees; this representation is called the regular representation.
We shatl denote by A(z) the determinant of 8(x). If nis odd, we
den&(ﬁv}ﬁy K’ the field obtained by adjunction of 4/ —1 to K; the linear
combinations of the clements ex with coefficients in K’ form an algebra,
whieh is the algebra o of Clifford numbers over K'. The matrix 6(x)
may be considered ag defining & linear endomorphism of o, If we set
w = 3(eq + jex), v = ¥lev — jey) (where j is an elen}ent of K’ such
that j2 = (—1)~»+072), it is clear that 6(x) maps into themselves the
subspaces o'z and o'y of 0'; we ghall denote by '(x) and @''(x) the
contractions of 8(z) to o'u and o'z, and by A'(x), A”(z) the determinants
of the endomorphisms &'(z), 8”(2)- If D is any one of the functions
A, A, A" we have D(xy) = D)D)

~
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An element geo is said to be regular if it has an inverse, i.e. if there
exists an element z7'¢o such that zx' =zl = ;. If = is regular,
we have A(z)A(z™Y) = 1, whence A(z} # 0. Conversely, if Az} 0,
6(z) is a regular matrix, and therefore #(z) maps b onio itself in a
univalent way. It follows that there exists an element z! such that
xx™h = eo; we have x(z7'z) = & = ze;, whence also 271z = ¢, 2 is
regular.

We shall now assume that the basic field K is the fieldsE of real
numbers. The regular elements of o form a multiplicative getup which
we shall denote by 0*. The contraction of 4 to p* ig ‘a/faithful rep-
resentation of o*, O

If zeo*, the mapping y — zya—' is an endomorphism of o, which
we may also represent by a matrix ¢(z). The mapping x — Y(z) is a
represenfation of 0* whose kernel is the in’te\section of 0¥ with the
center ¢ of o, ’

I we assign to an clement 2 = 22,,9&:{ of 8 the point of %" whose
coordinates are the coefficients ¢, .{iift‘ér having arranged the sets 4
in some order), we obtain a one-tudone correspondence between o and
R”. We may define a topology in ¢ by the requirement that this
correspondence shall be g \Momeomorphism. The operations in o
(addition, multiplication, bétween elements of o, multiplication by real
numbpers} are obvioysly*eontinuous with respect to this topology.
Furthermore, if #g0¥\2~1 is a continuous function of z. In fact, we
have seen that, 3 Js the unique solution of the equation B(x)y = eq;
since the coeffitiénts of the matrix 8(z} are linear functions of the
coefficients.cudf 2, the coefficients of ™!, expressed as a linear combina-
tion of the'basic elements e4, are rational functions of the quantities
¢4 and/3hé denominators of these functions are cqual to A{z). Bince
A(ﬂ’\)\:% 0 on o* =1 is a continuous function of z on ¥ 1t follows
thabb*, considered as a subspace of o, becomes s topological group, and

:‘Q.t}.ta,t f and ¢ are continucus representations of p*,
'“\\ oo

We observe furthermore that the mapping z — 8(x) not only is
gontinuous, but is z homeomorphism of g with some subspace of the
space of all matrices of degree 2° with coeficients in R, In fact, we
have 6(z)es = 2, which shows that the coefficients of z are also the
coeflicients of a certain column of the matrix ¢(z),

We have

G(Gu—f"x—f-%‘f“ T +%W;) = 9(80)-5-5(3:)-{-%(9@))2-!- o

+ o (B
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If m tends to infinity, the right side tends to exp 6(z). Therefore
e+ + 2220+ - - - +2n/m! tends to a limit, exp z, such that
flexp z) = exp 0(x). Wehaveexp (z 4+ ) = (exp z){exp ») if zy = yx;
in particular (exp {—z)) = (exp 2)~!, which shows that exp zeo*.
We have (by Corollary 1 to Proposition 2, §II, Chap. I, p. 5)
Alexp x} = exp Spé(x) = 0,

We shall now compute ¢(exp ). The mapping y — zy — yz
is a linear endomorphism of o, which we denote by X(x). Let y, be
any clement of s, and set () = (exp le)yo(exp {—tz)), where £ is apyr™
real number. We have

O
y(t + h) = (exp ha)y(d) (exp (—hx)) O
= (6o + ke + - - (oo — hx + - -
whenee A
ok Ot
G =t SR syt — 0 X

1o\
We know that the solution of this diffexgnbial equation (which is
equivalent to a system of 27 linear homogetiebus differential equations
for the coefficients of y(f)} is given by the formula y{f) = (exp X (x))yo.
Therefore we have & A

¥lexp fx) exp (X (x}).

Lot 3N be the veetor sub pghcc of p which is spanned by ey, - - -, e,
We shall consider the setGf*fhose elements x€0* which are such that
¥(z) maps MM into itselfy This set is obviously a bubgroup of o*.

Definition 1. Lol G le the group of elements ze0* suech that (x)(IN)
(M, alz) = 1 agdX(if n is odd), A'(x) = A'(x) = 1. The component
of e in G (consédéred as a topological subgroup of 0%) is called the spinor
group.  Thisgroup will be denoled by Spin (n).

If « is z&,m element of 0* such that ¢{x)M M, the eontracticn
of ¥(x) ”tjl M is an endomorphism of I which we shall denote by o).
I Mejer = 272,050, we have o() (TP mes) = i, SLonvs).  Sinee
¥(2} iz an automorphism of the algebra o, we have y{(x)}(Zlwe)? = W(x)
(ZLiw))® = — S Bh ami)? - e, whenee 22 (21 a0 = 2L ran It
follows immediately that ¢{(z) is represented by an orthogonal matrix
in terms of the base {e, + - -, e} of M. Therefore, we have o(G)
{ O(n); the mapping x — ¢(x) being clearly continuous, we have
o(Spin (n)) ¢ 80(n). We shall prove that ¢(Spin (n)) = SO(n).

Denote by I, the vector space spanned by the elements ee; with
17 (1<4, j<n). The dimension of this space is n(n — 1)/2.
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We have
0 if E=4,7
X(ewe)er = {2e; if k=1 Q€4S n 127

—2; if k=3

It follows that, if zedl,, we have X{(z)I M. We have proved
that ¢(exp fz) = exp (X(x); it follows that zeMy implies ¥(exp )M
( M for every &. We have Sp 08(eie;) = Sp 6{e)b(e;) = Sp.o{ey6(es) =
Sp 6(e;e;); since ey + e = 0, we have Sp 6(ee)) = 0 (L 9%, j € »n;
? # 7). DBy the same argument, we see that, if n is, \()&J‘, Sp #{ew;)
= Sp 0(eie;) = 0. Making use of the formula ~= exp Spli, we
see that zedl, imples Alexp a) = A'(exp z) = 5”(exp )y =1. It
follows that &M, implies exp f2a@ for all yéal, and thercfore also
exp € Spin (n). If zeM,, we denote P \X1{z) the matrix which
represents (in terms of the bage {ey, * -« y'e.} in M) the contraction
to M of the endomorphism X (x). i {ee exp tX,(x)e80(n) for every ¢,
X1(x) is skew symmetric; the equali{jg{ i{z) = 0 implies that x belongs
to the center of 0, whence z ;—-: 0. It follows that x-— X.(z) is a
univalent linear mapping of M, into the space of skew symmetric
matrices of degree n. Onedki® other hand, I, and the space of skew
symmetrie matrices of degree % have the same dimension nin— 1}/2;
s0 the latter is covered by the mapping. Since exp X1 (z)ge(Spin (1)),
it follows by Pr,qﬁe\é\fition 4, §1I, Chapt. I, p. 5 that (Spin (n))
contains a neighbourhood of the neutral element in SO(r). But
¢(Spin (n)) B)a subgroup of SO(n), and SO(n) is conneebed; by
Theoremyi§1V, p. 35, we see that ¢(Spin (n)) = SO(n).

Let/sr-be the contraction of ¢ to Spin (n). The mapping ¢ of
:Spi%%h)'onto 80(n) is obviously continuous. This mapping is also
imgerior.  In fact, lot ¥V be a neighbourhood of e in 0. Sinece the

. \,fginctlon exp & Is continuous, there exists a neighbourhood 7 of 0 in

WRe such that exp zeV for all zel/. We know that, if X runs over all
elements of a neighbourhood of 0 in the space of skew symmetrie
matrices, the set of the corresponding elements exp X is a neighbour-
hood of the neutral element in SO(n). Therefore ¢,(V /™ Spin (n))
contains a neighbourhood of the neutral clement in SO(n), which
proves our assertion. [t follows immediately that 80{n) is isomorphie
(as a topological group) with the factor group of Spin (n) by the
kerncl F of the homomorphism 4,

The elements of & which arc mapped upon the unit matrix by ¢
are the elements of @™ ¢ (where ¢ is the center of 0). Ifaisa real
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number, we have A(aeq) = a?"; therefore, the only elements of the
form aeo which belong to G are X e If n = 1 {mod. 4), we can write

aeo + bey = (@ — v/ —1byu+ (@ + A/ —1b)

where u = (60 ++/ —Lley), v = &0 — +/—1ex); since u is the
unit clement of ou, we have A'(u} = 1, from which it follows easily
that A'(aes + bey) = (@ — 4/ —1 BT, and similarly A”(geo + bex)
= (a4 /=1 0" Tt follows that ¢ G is the group of clements
aes + bex such that (o + V1B =1; it is a eyclic group ofs,
order 2°7 1. A L

If n=3 (mod 4), we find in the same way that A’(aeuﬁ—:\l{‘kﬂ)
= (a+ b, A(seo + bex) = (@ — Y, It follows thab e M @
is composed of the elements t e, +f. . :"75

In any cage, the group F, which is & subgroup of G2, is a finite
eroup. It follows that F is discrete; therefore (Spht (n), @1) is a
covering group of SO(n}). An easy comput{t}on gives exp €16z
= (cos D)eg + (sin t)eres; it follows that —ef2="exp me1e:€ Spin (n),
whenee —e,eF. Since F eontains an elemﬁn}b “Feq, the group SO(n)
cannot be simply connected. But we kngm ‘that the Poincaré group
of SO(n) is of order at most 2 for # 243, Thevefore we have proved

Proposition 3. The Poincaré g}*tm'p of SO(n) is of order 2 for
R 3. The group Spin (n) is siply connecied if n 2 3.
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CHAPTER TII
Manifolds

Summary. The manifolds to be considered are exclusively ‘‘analytic
manifolds.” They are defined in §I; our method of definition seems slightly
preferable to the method of Whitney in that it is “intrinsie”’; i.e. ihdocs not
require a posteriors identifications. .

We define in §IV the notion of tangent spuce to an alistrictly given
manifold; to every analytic mapping @ of a manifold U intgranother manifold
% is associated a differential mapping d® which maps the tahgent space to U
into the tangent space to W. The differentials of fubittions are considered
as a special case of thess differential mappings. ¢ fe,

In §V, we introduce the notion of an inﬁnjtcsirmﬁ‘transformation, which ia
defined as a law which assigns to every point af\fh& manifold a tangent vector
at this point; we define the “bracket operaidpn? for infinitegimal transforms-
tions, and we discuss the effect of a mapping’on this operation.

In §§VI, VII, VIII we study the'rohion of a distribution on a manifold
V. A distribution is defined as s 14w Which assigns to every point P of EY
a sub-space Mp of the tangent spage st P.  An integral manifold of this dis-
tribution is a sub-manifold of & whieh admits 9z as tangent space at any
one of its points P. The exidtence of such integral manifolds depends upon
certain integrability conditiens, which we express by suying that the distribu-
tion must be “involutive”’ (Definition 5, §VI, p. 85). We prove in §VII
that the condition of being *involutive” is actually gufficient for a distribution
to have integral fpanifolds. The integral manifolds are first obtained loeally;
then by a tf)p(ﬂ%cal process of “piecing together,” we construct in §VIII
the ““eompletelintegral manifolds in the large.

In _§IX~ we consider those manifolds for which the second axiom of denu-
merability~of Hausdorff holds trus. We use this axiom only to prove Propo-
S“'}‘Q;E-:‘l.; AIX, p. 94; but do not know whether this axiom is necessary evel
t}l&( Nos

§I. AXIOMATIC DEFINITION OF A MANIFOLD

Let 8B be a topological space. We denote by p a point of B, and
consider k + 1 real valued funetions, fo, f1, * * * , fi, which are all
defined in some neighbourhood of p.  We shall say that fy is enalytically
de;‘oefndent on fi, + * «, fx in the neighbourhood of p, or around p, if there
exists a neighbourhood ¥ of p and a function F(us, - « -, u) of & real
arguments, such that the following conditions are satisfied:

1) The functions fo, f1, - - - | fx are defined on V.,

2} The domain of definition of F includes all systems of values of
the form wy = fi(g), - - -, wx = filg), for geV.
68
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3) If qeV we have

folg) = F(fula), - -+, Felgh)-

1) The function F is analytic ai the pornt ur = filp), © 0, W
= fi(p).? Let us now assume that B is conneced and that we have
assigned to each point pe® a class G(p) of real valued funetions, sat-
isfying the following conditions: )

1. Each function in Qfp) 78 defined in some neighbourhood of p (t-his\
neighbourhood may depend on the function). O\

I1. Any junction whick depends analytically around p onge, finite
number of functions in G(p) is iself in @lp). :

LIL. It is possible to find an ordered system (fy, * - ° "rffn)" of fune-
tions in G(p), a neighbourhood V of p, and & nu’mbe&:ﬁ@"> 0 with the
following properties: N\

1) The functions f1, = - , fn are defined on :V\x:

2) If we assign to-each point q&V the point B(HER" whose coordinales
agrexy = filg), * ~ 2T T 1.(q), the mappiig  is @ homeomorphism of
V with the subset of R» composed of the puitts (xy, 7, x,) such thal

E O\

~

- P < aus - R <a

3) If qeV the functifm-sjﬁ,\ - -, [y belong to alq), and every function
in @(g) depends analyticallyonfy, =~ fn around g. _

Tnder these condifigns we shall say that we have defined a mani-
fold V.2 Therefo;'e;\”tt)" define a manifold we must first give a topolog-
ical space B anc}{t&ien select for every point peB a certain class G(p)
of real valu&%ﬁiﬁctions.

The spicde B is called the wnderlying topological space of the mani-
fold. Ihc‘r class @(p) is called the class of analytic functions on U
at hepdint p.

he underlying space B of a manifold cannot be an arbitrary
topological space for we have required that it be connected and 1t
follows from IIT that every point of L has a neighbourhood which is

homeomorphic to a cube in some eartesian space.

! This means that F may be represented in a neighbourhood of this system of
values by @ convergent power series

® This definition is equivalent to the classical onc given by Whitney in *‘ Differ-
antisble Manifolds” (Annals of Math., vol. 37, 1036). It should be observed
that we limit ourselves to the congideration of analytic manifolds.
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We observe that, if an ordered system {f, - - -, fa), a neighbour-
hood V, and a number ¢ > O have the propertics 1), 2), and 3) of
condition III, these properties also hold if, without changing ¢ or V,
we perform an arbitrery permutation on the functions fi, - - -, fu
On the other hand, property 2) implies that the functions f5, « - + | f,
are distinet. Therefore properties 1), 2), 3), are propertics of the
finite set {f1, + - -*, fu] (and, of course, of ¥ and a).

Definition 1. If the properites 1), 2), 3), of condition JII hold
for the system {f1, - - -, J.), the neighbourhood V, and the numﬁer a, we
shall say that the finite set {fy, + - -, fa} 1s 0 system of codrdinaies on T
at the poind p, and that V is a cubic neighbourhood of m\with respect lo
this system of ecoordinates. The number a is call@d}jﬁ'g breadth of the
neighbourhood V with respect to the system of coordahates {f1, - - - , fa}.

Remarks, 1) If {f;, - -+, ful Is 2 sys.tein‘of coordinates at p,
and if V is a cubic neighbourhood of p witliwespect to this system, the
set {fi, » + -, fu] is also a system of coordinates at every point of V.

2) If {fy, © = -, fa} is a system oficéordinates at p, any neighbour-
hood of p contains a cubic neighbblithood with respect to this system.

3) If fis a function whick} s ﬁnalytic at p on U, there exists a
neighbourhood ¥ of p such that fis also analytic at every point ¢g¥V.
In fact, let {fy, - - - ,fﬂ}‘l.)'e;éj system of coordinates at p; there exists
a neighbourhood ¥, of p'such thatf, 1, - - - | f. are defined on V1 and

(1) 1@ =PRB@, - L), for ge?y,

where f*(u,, \\, n) 18 & function of n arguments, which is analytic
at the poinf i = fi(p), - - -, u. = Ja{p). This function is also
defined apdm’nadytic at all points of a neighbourhood U of this point in
Rr; weseam find a cubic neighbourhood V of p with respect to the

syst{mﬁ’{ﬁ, "+, fal such that V' ( ¥, and such that ¢eV implics
(fr@’), ©* o Jalg))eU.  Then f is analytic at every point geV.

AN We shall say that (1) is the expression of f in terms of the coordi-

\'“\ ~hates fy, - -+, fo.  Ttshould be observed that the function f* actually

depends on the way in which the functions of the system of coordinates
are ordered.

‘Propomtion 1, L‘et {zy, <« -, 2.} be a system of goordinates at the
pomt.'p on the mamfold V. Let fi, - -+, fn be a finite number of
functions, belonging to Q(p). In order that {fi, =+, fnu) should be o

syste'n.fb of coordinates af p, the following conditions are necessary and
sufficient:

1) m = n, and,
N *
2D o fi=f@y - v, 1) is the expression of f; in terms of the
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coordinates X1, * * * , Tx, the functional deferminand,

D(f:; T )f:)
D($1, T ;xn)’

is = Oforzy = 2a(p), - ¥ = z.(p).

1} The conditions ar¢ necessary. In fack, if {fu, -, fal
is a system of coordinates at p, the function z; may he expressed
in the neighbourhood of p as 2 function x; = ¢i(f1, * * 4 fa), where
gy, * 7, Um) 18 8 function of m real arguments, defined and
analytic in & neighbourhood of the point uy = fi(p), * * * y Un = FokDi!
Moreover we have 2\

gD, -+ gy = R
g(fi@, - - ) = 1SS O

where f = (1, = = =, Um)y E= {21, """ L) drd. fioints of R™,
R* respoctively, belonging to sufficiently small speighbourhoods of

o= (Fulp), + * * 5 Jul®), o = (@), (B We have

o) () o
pol [ Y9 s, AT Sism
i (3.‘83 to auk f[o k';\ N ~ . 1

5. (é‘_gf) (ifr_*) )
P\ u;/ tie \8T;/ o

* 2\
Let us set ay = (a—f— < {Feém the first set of equations it follows

%, 1$k<n

My

9x; /e
that the linear cquablens Z;%:¥: = b; have a solution whatever the
right-hand sides, b - * , be, MAY be. Therefore we must have

m & n, and thqiﬁzitrix {ay) is of rank m. Similarly the second set
of equations‘g\"c's n < m;thereforem = » and |[(a;)| # 0, which proves
that the g:oﬁdit-ions are NECEISATY.

2}.\@:g}hi'ersely, let, us assume that the conditions 1), 2) are satisfied.
Let'W be a cubic neighbourhood of p with respect to the system {z1,
<+ +, 2.}, and let @ be the wreadth of V. Taking a small enough,
we may assume that the functions fi, - -+, fa € defined on V and
anslytic at every point of v. The implicit function theorem gives
the following: there exist two numbers, ax > 0, b > 0 such that if
Y1, * - -, Ya are n real nuinhers satisfying

(2) i~ Sl <b A Sisn

the equations
F GRSV
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have one and only one solution (x1, - -, x,) which satisfies the
conditions
l2e — 2:(p)| < an

Moreover, this solution is given by equations of the form

o= gilyy Y

where the functions gy * © *, ga are analytic in the cube @, defined
by the inequalities (2.

We may assume without loss of generality that g¢f%'a. If we
assign to every poin = (y, " * , 720 the Poigty®(h)eV whose
coordinates are x; = glyy, - -y (1€ 4 g n)y’gﬁave

RO =y (1< Sl

It follows that & ig g homeomorphism of Q Witk 2 subset Wol V. We
can find a numher ay such that 0 « a3.501 and such that the con-
ditions [z; ~ a(p)] < a4y (1 € 4 € ) inply 75y, - - , @) — fi(p)]
< b. Therefore containg all thehoints ge V for which the inequali-
ties |z () — x(p)| < ay hold, whichroves that W is a4 neighbourhood
of p. If reW, each of the fungtions T 00, 2, dopends analytie-
ally on fy, - -+ 1, aroundg¥ince we have

Zilg} = Gi(fl(?}, N » Jal)) (1eW; 1 < ¢ < ),
Tt follows that any fumetion J2@(r) depends anal

e ¥

yéieally onfy, - -« - | fa
around r. We s:{e"that broperties 1), 2), 3) of condition IIT held
for the systemJffy, - - . s f), the neighbourhond W, and the number b,
In gtller u-'{_{r@s,“{ oo flisa systern of coordinates around p, and
Wisa (:LIQI'Q:’ neighbourhood of P With respect to this system.

~ Corellary. 77 9 45 4 manzfold and pev, the number of functions
i a\,{ysiem of coordinaies g P ts the same Jor all systems of coordinates

! “\*This number of functiong ig called the dimension of U at p. This

yHiumber does not depend on p. [y fact, it follows immediately from

Rema?k L p. 70, that p hag 5 ueighbourhood ¥ syel, that the dimension

of U is the same at all points belonging to 7, For every integer

7 > 0, let U, be the set of points of at which the dimension of U is n.

T}}en the sets U, are all open; they ape mutvally disjoint, and every

pomt of U belongs to one of them.  Since ¢ i a connect-ed,topologicaI
space the sets are gl empty except one; this proves our assertion.

. The common dimension of at all its points 35 called the dimension
of U,
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§II. EXAMPLES OF MANIFOLDS

Let V be a set on which are defined 7 real valued functions, fi,
« «.-, f» with the following property: if we assign to every clement
-peV the point ®(p)eR" whose coordinates are filp), - - -, falp), then
the mapping p — ®(p) is & univalent mapping of ¥ onto an open
connected subset of B®,

Under these conditions there exists a manifold U whose set of
points is ¥ and which is determined by the property that the fulit:
tions fi, - * * , f« form a system of coordinates on U at each peint of
V. 1In fact, since & is univalent, there exists a topological Space B,
whose set of points is V, and such that & is a homeomorphism of 8§
with the subspace ®(V) of B*: the open sets of B are_thé\sets which
are mapped by @ onto open subsets of R*.  The topoldgical space B
is connected. If pePB let G(p) be the class of réblvalued functions
defined on neighbourhoods of p and depending aJ{alytically onf, - -,
f, around p. It is a trivial matter to verify that the assignment
p — @(p) satisfies conditions I, II and“lﬁ of §f. Therefore this
assignment defincs a manifold U, and % ~ .., [, obviously form a
aystem of coordinates at any point R’

I the set V is equipped a prfore with a topology, and if iz a
homeomorphism of ¥, the topdlogical space defined above coincides
with the one given a priorsf the latter space is the underlying space
of the manifold we have @tﬁstrueted.

For example, if wetake V = R~ with its usual topology, and take
for fi, - = + , fa th goordinates in B», we obtain a manifold whose
underlying space G& B».  This manifold will also be denoted by R™.
A function f, defined in a neighbourhood of a point peR®, is analytic at p
on the manifold B~ if, when expressed as a function of the coordinates,
it is anal§tic at the point zy = z1(p), * * * , %a = Za(p).

A,{fl,&'nifold which can be obtained by the above procedure has the
property that therc exists a set of real valued functions, defined on the
whele manifold, and forming & system of coordinates at every point
of the manifold. There exist, however, manifolds which do not have
this property. In this connection we mention the following problem,
which seems to be of the utmost difficulty: If 0 is a manifold, does
there exist a finite set of real valued functions, fi, - - *, Sy, defined
and analytic at all points of U, and having the property that at each
PEU some subset of the set {fi, - - * v} is a coordinate system at p7
In fact, it is not even known whether there always exists on a manifold
a non-constant funetion which is everywhere analytic.
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We shall now construct a manifold whose underlying space is the
one-dimensional torus T?, i.e, the [actor group of the additive group
R of real numbers by the group Z of integers.  Let r be any point of
T1: 1 is a residue class of R modulo Z, i.e. it consists of a real number
and 21l other real numbers which ean be obfained from z by addition
of arbitrary integers. If f{z) is a periodic function of period | it
takez the same value at all points z of the residue class r; we may
denote this value by f{r), and then f becomes the symbol of a function
defined on Tt In particular, the functions sin 2#r, and eod Iy are
real valued functions defined on T, Let @(1o) be the class g, functions
defined in neighbourhoods of 1o in 7' and depending éfnalyt-ical]y
around to on sin 271, cos 2nz. If is easy to sec that, the assignment
to — @{re) satisfies conditions I, II and IIL of §L. Hence it defines
a manifold, which we shall also denote by TL ,ﬁf'{;he residue elass ro
does not contain £ or 4 the function sin 2rpdsasystem of coordinates
at Lq; if it does not contain 0 or § the funetion cos 2xr is a system of
coordinates. It is easy to see, howewe that no function ean be a
system of coordinates at every poing n?f»".

Let U be a manifold, U a coqﬁ@dtcd open subset of U, and &(p)
the class of analytic functions alip on U. Tf we assign to every pel
the class of functions of the fotm 7 © I, where fis any funetion in G(p)
and I is the identity mapping'of U into U, we clearly obtain a manifold
U whose underlying sgéﬁce is U, Buch a manifold is ealled an open
submanifold of V.

Definition 1, *Let 0, W be manifolds and let ® be @ mapping of V
tnto W, where V(i8some neighbourhood of the point psC. The mapping
s said 1o be axalytic at p if the following condition is satisfied: if g is any
Junction on W which is analytic at ®(p) then g © & s analytic ai p on T,

Su@'bée Jurthermore that ® 7s a homeomorphism of U with W.
The ®'is called an a;mlytic isomorphism of O with W if both ® and 1ts

" ;*e’éi*ﬁmcai mapping © are everywhere analyiic.

N\

Suppose that W is a given manifold, that B is some topological
space and that & is a homeomorphism of B with some connected subset
Uof W. Then U is the underlying space of an open submanifold aL of
W. We may define a manifold U, whose underlying space is B, by the
condition that & shall be an analytic isomorphism of U with 4. To
do this we merely assign to each pe® the class @(p) of functions of the
form f 0 @, with f any function which is analytic at &(p) on U.
Remark. A homeomorphism & of a manifold U with a manifold
W may be everywhere analytic without being an analytic isomorphism.
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In fact, let us take for U the manifold B of real numbers, as defined
above, and for ‘W the manifold which has the same underlylng space
as U, but which is characterized by the fact that the mapping z — ¥{x)
— 2% is an analytic isomorphism of B with W. Let & be the identity
mapping of R into W; @ is clearly an everywhere analytic homeo-
morphism of B with W. Since the function « is analytic at 0 on R
but not on W, ® is not an analytic isomorphism, This example also
shows that distinet manifolds may have the same underlying space.

Proposition 1. Lei @ bea mapping of @ manifold C inlo & manifold.
. In order for ® to be an anclyfic isomorphism of U with W it 3\
necessary and sufficient thai the following conditions be satisfied: 1)/P as
o komeomorphism of O with W, 2) if p is any point of U, and if {1t
Ya} 18 @ system of coordinales on W at ®(p) the functions y1 o -,
4 © ® form a system of coordinates at p on V- WG

1) Suppose that & is an analytic isomorphism afd fet T be its
reciprocal mapping. If f 18 gnalytic at p on U, \fO ¥ is analytic at
&(p) on W, and hence depends analytically ongn™ ~ * 5 U around
&(p). Since f= (fo¥) 0%, f depends anayk{'tju&lly around p on the
functions ;1 ©®, + © +, YO P Tt follows\that, the functions y: © ®.
.+« y, 0®form a system of coordinatesat p and that if T is a cubic
neighbourhood of ®(p) with respec'tr‘ib' the system {y1, * ', Yn):
¥(W) is a cubic neighbourhood of ¢ with respect to this system.

2) Suppose that the conditions$ 1), 2) are satisfied. Tf g is analytic
on W at &(p), 1.e.1f ¢ depen@s'\'analytically around B{p)ong, © * Y
then g ©® depends ana dieally on y10%, - - 7 y, © & around p,
and hence g © ® is analytic at p. This shows that @ is everywhere
analytic. Tf fis any dunction which is analytic at p on U, { depends
analytically aroufidpony1 0P, - 7, Un o ®. Hence f 0 ¥ depends
analytically a,r,p,l}ri'd &(p) on the functions (Fi 0P oY =¥y, © °
{yoOd) O %z Y, which shows that fo¥ is analytic at &(p) on
W, Thei;éfore ¥ is everywhere analytic, and hence 2 is an analytic
isomorphismm.

’ SIII. PRODUCTS OF MANIFOLDS

Let © and W be manifolds of dimensions m and n respectively,
and let 5, 8 be their underlying topological spaces. The cartesian
product B X W is a connected topological space which we shall now
make the underlying space of & manifold.

Let {p, ¢) be a point of B X W (peB, eW). We denote by a(p),
®(g) the classes of analytic functions at p and gon Band B respectively.

We denote by &, @ the projections of B X % onto B and B
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réspectively (ailp, @) = 2 as(p, @ = 9. Let €@, q) be the class
consisting of the functions f © a1(fe@(p)), g © @{ge®{g)) and of all fL.mc-
tions which depend analytically on these around {p, ¢). The assign-
ment, (p, ¢) — €(p, ¢), defines a manifold whose underlying space 18
B X 8. In fact, the class @(p, ¢) obviously satisfies eonditions I
and IT of §L. In order to verify that condition IIT holds we choose
systems of coordinates {xy, - - *, zn) on U at pand {y1, * 7 0, Ynl
on*Watg Ifaisa sufficiently small positive number we can find &
cubic neighbourhood V of p with respect to the system {21, * 1 7% %n!
and a cubic neighbourhood W of ¢ with respeet to the systeml {y,
« + «, ¥}, both of breadth a. KAV,

We set 21 =210@y, * * *, Bm = Tm © 01, zm+1=,yi.b&z, L
Zmin = Yu © @2. The functions zi, - * *, Zn4s 8T€ definied on V' X W
and belong to €(p’, ¢) for every (¢, ¢)eV X W2»" Every function
of the form fo &, fe@(p”), depends analytieéﬁ}r on iy, v, Zm
around (p', ¢'), and every function g O &, ge®{y’), depends analytically
O Zuyy, ' © 5 Zmin around (p', ¢'). Hendberany function in €(p’, ¢')
depends analytically on 2y, - - -, zMn'a}oﬁnd ', ¢).

Finally, if we assign to a point @3"¢:)sV X W the point of RRm+»
whose coordinates are z,(py, ql),.ﬂ'i.:m(pl), co s zmpy gy = zu(p),
2@, €1) = 12000, © © * , 2Py, @) = Yalg), we clearly obtain a
homeomorphism of V X W:'with a cube of sidelength ¢ in R™t~.
Therefore condition TTT Melds.

The manifold obteined in this way is called the product of the
manifolds U, W an {denoted by U X W. We may, in the same way,
define the produtt, of any finite number of manifolds.

If ©, Wy & are manifolds, then, strietly speaking, the manifolds
(0 X W) XL, U X (W X X) and D X W X X, are not the same.
Howeverhbetween any two of them there is a natural analytic iso-
morphidm. For instance, the mapping ((p, @), r) — (p, (g, r)) is an
analytic isomorphism of (U X W) X & onto V X (W X %} while the
~Joapping ((p, ¢), 7) = (», ¢, r) is an analytic isomorphism of (0 X W)
NX L onto U X W X X .

The manifold &* defined in §I1 is obviously the product of n
manifolds identical with B. If we construet the product of # mani-
folds identical with T! we obtain a manifold whose underlying space
is the n-dimensional torus; we shall denote this manifold by 7™

§IV. TANGENT VECTORS. DIFFERENTIALS

Let © be a manifold of dimension n, p a point of T, and @(p) the
class of analytic functions at p. By a tangent vecior at p we ghall
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mean & mapping L of &(p} into the real numbers which satisfies the
following two conditions:

1} I is linear, i.e. for any two functions f, g in alp) and real numbers
a, b we have L{af + bg) = aL{f} + bL{g),

2) L is a differentiation, i.e. for any two functions f, ¢ in @(p) we
have L{fg) = (L(MNglp) + J(p)Ligh.

If I iz a tangent vector and f is & funetion in @(p) the mumber
L(f) iz often called the derivative of f in the direction L.

Ti I, I are tangent vectors to U at the point p, it is clear that
(for any A, A'eR) the mapping Q)

f - NAS + N ‘O

is again a tangent vector to 0 at p. Hence the tangent veg:fm}s at p
form s veetor space, called the fangent vector space to U at Py
Now let {a1, * -+, %} be any coordinate systena’at p. 1f f
is analytic at p, f has, In gome neighbourhood of p,’an expression in
terms of these coordinates: O
"\ 4

o) = PEal@), - &)
where f*{uy, © © ©, %a) 15 8 function of freal variables, defined and
analyticin aneighbourhood of the pui;ﬁtul = myfp}, - * U T . (p)-
&N 4 af*
To simplify the notation we shalkayrite —-i when we mean ——]
) o ai; Ui |y =zl
Then it is trivial that for agl\}(f’ choice of real numbers A, ~ * " M, the
mapping of ®@(p) Info t w\&eal numbers defined by
N . af
D" f— Zi— M
:‘:\ ‘ ! 8z
is a tangent:w{e(\ﬂ:or at p. . Now we shall prove that every tangent
vector at \p}x\q of this form by showing that %f {23, * * *» Ta} 5 QNY
coordinald, system at p, and I, any tangent vector at P, Wé have, for all
Jea(d))
N af
(1) L{f) = Z L(ed
ax;
This relation is also significant because it shows that & tangent vector
is uniquely determined by the values it assigns to the functions of a
coordinate system,
To prove (1) we first remark that it is trivial that every tangex.lt
veetor maps every constant function into 0. If f is apy funection in
G(p) then we can express f {in & neighbourkood of p) in the form.:
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f=a+ae —2}) + - -« + aplzs ~ 2

+ Iz — 3:'0) (x; — xf)ga

with the functions g, in G(p), and wherc 2z} = z:(p), - - - , 2% = z.(p).
Applying L we find

@) If=al{zi—2al)+ - - + aliz, — 2 U
+ L(E::i-l(x‘i - x?)(xf - xj)gi.f)
= ooyt e 3 LG D —

N\
Then, making use of the differentiation property of a tange\nt ¥ector,
we have (\)
'\
L{(m — 20) (2 — 2))g) = ((2:(p) — 28)L(x; — x,'-’). A\ ,
+ () ~ )Ll — ) + L) (wlp) oz (i) — 22)
= 0 R
H 2) (b Y ields (1), A\ |
ence (2) ( ecause a; = o, yle . A
If we set
a £ >
Ln=F \d<i<n

"
dzoi

7

we obtain a tangont vector‘L'{fér which Li(z;} = 8,. Thesen tangent
vectors are linearly independent, since (Z:Li)(x;) = N Moreover,
if L is any tangent vectah, We have L(z;) = (ZLE)L) () (1 € § € n),

and hence L = ZB(rdL. It follows that the langent space is an
n-dimensional veglor space.

Now let 3-be a manifold and let @ be 5 mapping of UV into W,
analytic at tlilg point peU. Let, moreover, L be a tangent vector to
U at p, and’y be any analytic function on W at, the point ¢ = ®(p).

If we %ﬁ/

e clearly obtain a tangent vector M to W at ¢. It is also clear that
the mapping, L — M, is linear.
Definition 1. The mapping which assigns to every tangeni vector
L to 0 at p the tangent vector M to W qf ¢ defined by (3) 1s called the
differential of the mapping ® P 1t ds usually denoted by d®, or d®,.
Suppose now that ¥ is a mapping of W into a third manifold €,
and that ¥ is analytic at ¢. If & is any funection on analytic at
r = ¥(g), the functions (ho¥) 0 d and 40 (¥ © @) coincide in the
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neighbourhood of p. Tt follows at once that
AT © B), = d¥, 0 d®,

Proposition 1. Let U and W be manifolds. Let @ be an analytic
mapping of U into W, and let p be a point of V. Suppose that dd,is a
wnivalent mapping of the tangent space to ) into the langent space to “W.
Then, if {yy, = © * , ¥m) 18 @ System of coordinates at ¢ = ®(p) on W, il
is possible to select from the set of funclionsy1 @ ®, * * * ; Um O & g subset
coniaining n functions which form a system of coordinales af p on PN
Moreover, ¢f {wy, = ° z.} U8 any system of coordinates at p on U, ,th(re
exists a system of coordinafes 21, * * 7 4 Em at g on W such that x; cpqlpéides
in the neighbourhood of p with 2;0 & {1 <5 € n). A

Tn fact, the function y; © @ can be expressed in the neighhourhood

of p in the form @i(xs, © ~ r.), where @ is a fundtien of n real
varables, analytic at the point z1 = 21(p), - v NN = z.(p). We
. de; Y
shall show that the rectangular matrix (—‘p-) ,z,\\is of rank n. Sup-
B L aunty)

doi
pose that 0 = Zji, A (—ﬁ)

0%,/ s=alp} AN
between columns of this matrix, tlet L be the tangent vector

to U at p defined by Lz =W (1S4, k < n), and let L be

{1 é.ﬂf —é.m) is a linear relation

the vector E\L; We havelhly: © ®) = ZN z—:—‘ o = (} whence
+8 3 i ze=zlp

@B(IY)y: = 0 (1 € ¢ £ m). It follows that dB(L) = 0; since d® iz
univalent, we have E=0, M=N="""*< A» = 0, which proves
our assertion. N

We can seleGhnt indices, 71, * * * in, from the set 1, - -+, mj
80 that the ‘dq’t“f}ffninant formed from the rows with indices iy, . « - 5 ¥n
is not 0. zit\is then clear that 4, ©®, * * s ¥i. © & form a system of
coordindtes at p on V.

Wiz" ean express %; in the form z; = Py, 0P, - - 7 ¥, © P)

in th€ neighbourhood of p; the /s are analytic functions of n real vari-
ables and their functional determinant does not vanish for ¥, = #:i,{9)-
We set z; = (s, * * - 5 Ui B £ < n) and take for zagy, © 0 7, Fm
those functions y; whose indices 7 do not ccour among i, * ", e
Clearly {zy, -« , 2z} is & system of coordinates at ¢ on W, and
408 —=z; (1 << ).

Remark. We see that, under the assumpiion of Proposiiion 1, there
exisls a neighbourhood of pin™ which 1s mapped topologically under ®.
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Definition 2. A mapping ® of & manifold U into a manifold W
is said io be regular af the poind pev if ® is analylic at p and d®, isa
untvalent mapping.

Proposition 2. The notation being as in Proposition |, suppose that
the image under d®, of the langent space to U {at p) covers the whole
tangent space lo W {at ¢ = ®(p}). Then ¢f {y1,* * * , Yn} is @ sysiem
of eoordinates ai ¢ on W, the funciions 4,0 ®, + + - y Ym O @ are part
of a system of coordinates at p on 0.

Let =y, + - -, 2, be the functions of a system of coordinates at p
on U. Here again we may express g, © ® in the form el N - 3,)
in the neighbourhood of p, and we shall show that thé yank of the
matrix (%) is m. In fact, let 23;";‘#;(%)"\ =10 be a

Ty z=x(p) Qx}" vx=xlp)
relation between the rows of this matrix, (1 g% n). Let M; be
the tangent vector to W at ¢ defined by ﬂf(,—(y;:),\—; 8 (L 5 4, 2 & m).
By assumption, there cxists a tangent veebor 7., to U at p for which

o e o
d®(L;) = M;; we have Z; (—) IQ(:cf) =Ly 0®) = 4. If we
axj =gl
multiply by g and sum for ¥ <60 m, we obtain g = 0, which
proves our assertion. We magh, assume without loss of gencrality
that the determinant formed Irom the first m columns of our matrix
is not 0. The functions yn0'®, - - - y Ym OB, Ty, - - -, x, forma
system of coordinates at p'on .

Ren;tgrk. It fql&q@s immediaiely that, wnder the assumption of
Proposition 2, tk@m’ge under ® of any neighbourhood of pin U covers @
nerghbourhoodef ¢4n W,

Proposition-3.  The notation being as in Proposition 1, suppose that
d®, is a i?ﬁear isomorphism of the tangent space {0 U {af p) with the
tange:?t\‘sﬁuce to W (at ¢ = ®(p)). Then there is q neighbourhood V of
g lih’N{}h “is mapped topologicatly by '11> onts a neighbourhood W of ¢ in “W;

m{éreovfar, the reciprocal mapping ® of W onte V 4s analytic ai g.
This is an immediate consequence of Propositions 1 and 2.
Proposition 4. Let @ be an analytic mapping of ¢ manifold T inio @
:tnamfold W.  If the differential of ¢ ie 0 af every point of U, then @
ts a constant mapping (i.e. ® maps V onto q single point of W).

Let p _be apoint of V. Let {y,, - - - » ¥n} be a eoordinate system
a$ the point &p on W, and let W be a cubic reighbourhood of &p with
respect to these coordinates, Let €y © -+, 7.} be a coordinate
system at p on U, and let ¥ be a cubie neighbourhood of » with respect
to the coordinates z such that (V) ( W. Ii gV, we may write



$1V1 TANGENT VECTORS DIFFERENTTALS 81

y{@g) = Filealg), - - -, 2.(0)), where the functions F; are analytic
‘n the cube defined by the inequalities z; — z:i(p)| < @ (where a is
the hreadth of 7). If qeV, denote by X, the tangent vector to U at
q which is defined by X; & = 8x. We have

aF;
PG C X oly; © ) = (d2o(X:0))y; = 0

It follows that the partial derivatives of the functions F; are equal to 0
and therefore that the functions F; are constant. This means that &
maps ¥V onto the point &p. A
To every point r&W we associate the set U, of points pe¥ .ﬁrﬁi'e\h
are mapped on 7 by @. It follows from what we have proved that
each U7, is open. On the other hand, the sets U/, arc mutugﬁly‘disj olnt
and the union of all these sets i U, Since U is connectg% #here can be
only one set [7, which is not empty. Proposition 4jg%liereby proved.

The differential of a functioi;}\"

A resl valued analytic function f, deﬁnt’ed"g}} 0, may be considered
as a mapping of U into the manifold R of-real numbers. Its differ-
entizl at p is a lincar mapping of the téﬁgent space, €, to U at p into
the tangent space I, to R at e =f{p). Since M., is a one dimen-
gional lincar space over R, Spannb‘d by the vector M, defined by
My(z) = 1 {considering z as{& Yeal valued function on R), we may
identify 9, with B itself(hy identifying M, with the number 1.
This makes df into a linf:aﬁk\function defined on 2, and with real values,
It follows directly from.the definitions that

A

o df(Ly = L.
N\

If fy, fe are‘o%ﬁalytic functions at p on U we have d(Afr + Nafa)(L)
= Ndfr(I)N Nedfo(L).  Hence the differentials df, for fin @(p), form a
linear sithspace of the space of all linear functionson . Ifzy, -+ -, &
forﬁ\:} coordinate gystem at p, their differentials de,, * + * , dx, are
obviously linearly independent. Hence the space D of differentials
is of dimension n, and coincides with the space of all linear functions
on £,

The preceding shows thatb the spaces & and D may be considered
as dual vector spaces.!

t The dual space of a vector spaced OVEr 3 field K is the set of all linear mappin‘gs
of £ into K. 1If € is of finite dimension, it may be identified with the dual of 1ts
dual space.
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Product manifolds

Let Uy, Vs be manifelds of dimensions ny, nz and let T = Uy X U,
be their product. Let py be a point of V), ps a point of Vs, and p be the
point (py, p2). We denote by £y, €2, € the tangent spaces to Uy, V., U
at pi, pe, D respectively.

Let, moreover, & and &; be the projections of T onto Uy and V..
To every vector Lg® there corresponds vectors L, = dan(l)e®, L.

= daws(L)eQs. Let {x;, - - -, &n] be a coordinate system at pi on
Uy, and Jet {31, *+ * *, ¥a) be a system of coordinates at paon Ts.
The funetions 2, =21 0@y * = *, &, = ¥n, O Gy, Za % Y10 Gy,

) Zappmy = Ya © @2 then form a system of coordmat(‘s at’p on C.
Let L,, L; be arbitrary vectors in &y, ¥, respectwcly There is a
vector Le® defined by the equalities

Liz)) = La(za), * + +, Lz )= Iu(xn.),
L(z“ﬁ'l) = LQ(yl), ) H L(‘E’t’-{i\fﬂ) = L?(yﬂz):

and it is clear that do(L) = Ly, dgsll) = Ls. Since there can be
only one vector L for which these equilities hold we see that we may
identify € with the product of the spaces 2, and €..

We have already identified\the tangent space to the manifold B
of real numbers at any pgiﬁﬁ with R itself, Henece we may identify
R* with the tangent space to the manifold R»,

LQHNITESIMAL TRANSFORMATIONS

Definition 1 et U be a manifold. A vector field X on U, {also
called an mﬁ@@ﬁzszmal iransformation), is a mapping which assigns to
every pomi\p u tangent vector X (p) to U at this point.

Let¢f\be any function defined and analytic st the points of some
open~8ubset U of V. Setting g(p) = X(p)f for pell we obtain 2
functmn defined on U, which we shall denote by Xf. If for each
a‘nalytlc [ the funetion X7 is also analytic we shall say that X is an

\ Janalytic infinitesimal transformation.

If U is an open subset of U on which there exists a system of
coordinates {z,, * - + ,z,}, there always exists an analytic infinitesimal
transformation defined on &/, In fact, let f be any function analytic
at a point pel; we can express f in the neighbourhood of p as a funetion

Ed
My - - sz ofey, - - ) 2. Setting X,(p)f = (zi) we obtain
T p

a tangent vector at p, and the mapping p — X,(p) is clearly an analytic
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infinitesimal transformation defined on U. Moreover, if we set
Xip) = (Z’Z) (1 < ¢ < n) we obtain » analytic infinitesimal trans-
formations which are linearly independent at every point of U. If
X is any other infinitesimal transformation defined on U we can write

X in the form X(p) = Z:A:(p)Xi(p) where Ay -+, dn are n
functions defined on U. If X is analytic, the functions 4:{p) are also
analytie, since 4; = Xz (1 £¢ = n). Conversely, if A1, A,

are n functions defined and analytic on U, it is elear that X = zA X,
is an analytic infinitesimal transformation on U. Since (Xf){m)

ars ] 2\AN
= ZA:{p) (B{c) , we shall call Z4; o the symbol of the infinitesimal
Lid p i Y \ ¥

transformation X. R

1f X and ¥ are analytic infinitesimal transtormationgdefined on &
manifold 0, the operation YX = Y o X is not inogeneral an infini-
tesimal transformation, For instance, Ho= R\{gnd if X and Y are

a a AL ¢ ai{
defined by Xf = -a?f: Y= Ei_; we havm)(Xf = Elg_x; and the
1 PN

mapping f — (jaf—)

dri ta/p
in Er). However, the operationlf*= YX — XY is always an analytic
infinitesimal transformationy&he proof of this consists in a straight-
forward verification (whi@l'ig\ve shall omit) that U(p) satisfies the
conditions 1) and 2) in*the definition of a tangent vector. In terms

isnot a tangeﬁﬁ\rectar to R (here p is a point

N

of a coordinate systefd{zs, * - " s .} at & point p we canl write {for

fe@(p)) Xf and Y pirithe neighbourhood of pin theforms Z4; (x1, - = *
af# « ’\ af*

Tn) P EB,&E"},"- Gy ) E:;‘ Thet, we find that

&
ad

:.\:. N s * 3{1; % @;) (ﬁﬁ)
(1)\""\‘~ (Uf)? - z“i (B‘ ’_ax‘, A‘. ch.- P ax? P

This expression for Uf yields a second proof that XV — ¥X is an
analytic infinitesimal transf ormation.

Definition 2. If X, Y are anclylic infinitesimal transformations
on U, then the infinitesimal transformation U = YX — XY will be
denoted by [X, Y.

This bracket operation, which assigns to every pair of analytic
infinitesima) transformations (X, Y) the infinitesimal transformation
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[X, Y], i a law of composition for the infinitesimal transformations.

. We also see immediately that, if @ is any number and X an infini-

tesimal transformation, then ¢X is again an infinitesimal transforma-
tion, and, if X, ¥ are infinitesimal transformations, then sois X + Y.
The bracket operation is distributive with respect to addition:

[3:X1 + 0:X5, Y] = Xy, Y] + aof X3, Y}
(X, ;Y1 + @Yo} = alX, Y4 + alX, V3]

(for ay, aseR, and X, X1; X2, ¥, ¥y, Y, infinitesimal trans{ormé@tions).
However, it is not associative: in general we have [[X, If], A= X,
[V, Z]]. - It is easy to prove that it satisfies the followit}g\'it}e}ltities:

X, X] =0
(1%, ¥, 2] + (1Y, 2], X} + [[Z, X), ¥}=0

for any analytic infinitesimal trarisformations'X\, Y, Z. The first of

these identities gives (X + Y, X + Yk=. b =1[X, Y]+[Y¥, X,
whence . D

[¥, X] = %) V1.

The second, is called the Jacobi idérrtity.

Let ® be an analytic mapping of the manifold U into some mani-
fold *w. Let X be an inﬁni:foési"mal transformation on © and ¥ be an
infinitesimal transformation on W. We shall say that X and Y are
B-related if, for evergmp'\f}int peV, we have

3

O d,(X,) = Y

If @ is evepywhere regular, there can cxist at most one infinitesimal
transformation X on U which iz ®-related to a given ¥ on W, since
then X,,\’i:s\fhen entirely determined by d®,(X,).

M, be the tangent space to 0 at p. Its image under d®, is a
subspace &, of the tangent space M, to W at the point &p. If an

/mifinitesimal transformation ¥ on W is ®-related fo an X on U, we

/

\“must necessarily have Yg,68, for every pe.

Proposition 1. Let ® be an eserywhere regular mapping of ¢ manifold
U into a manifold W. If pev, let, {2, be the tangent space to U ol p and
set §, = dop(®,). If Y 15 any analytic infinitesimal transformation on
W such that Y468, for every point peU, then there exists one and only
one analytic infinitesimal transformation X on U which is ®-related to Y.

Under our assumptions, we can find for every peU an element
X &%, such that d®,(X,) = Ya, We have to prove that the agsign-
ment X:p — X, is an analytic infinitesimal transformation. From
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Proposition 1, §IV, p. 78 it follows that we ean find a system of
coordinates {1, * © * , ¥m] 8t ®p on W such that {710, -,
4, © B} is a coordinate system at p on VU {(m, n being the dimensions
of the manifolds W, V). U g is in a sufficiently small neighbourhood
of p in U the equality d®,(X) = Y, gives

X (i 0®) = Yagi = (Y¥i)ow

i.e., the function X(y: ©®) coincides in a neighbourhood of p with
Yy, 0 @, Bince Y Is analytic on W, Yy; is analytic at ®p; hence,
Yy; 0% is analytic at p, and X (y; © ®) is analytic at p, which proves
that X is analytic at p. O\

Proposition 2. Let @ be any analytic mapping of a manifold(0inlo
a manifold W. Let X1, Xy be analytic infinttesimal transform@‘tiéns on
C, and Yy, Y, analytic infinitesimal transformations cm'W\ If X;is
Borelated 1o Vi (2 = 1, 2), then [ Xy, Xal ts d-related to{Fn Yol

Let p be a point of G, and let g be a function onSP, analytic at the
point ¢ = ®p. The fact that Xy, Y; are d-related\ = 1, 2) may be
expregsed by the formula : v

(Xlg 0 8y = (Fad)ev
or . ‘ N
(Xi(go ‘T’))p?::“:(i’ig 0 @)y,

which holds for any peint p’ Qﬁ a suitable neighbourhood of p in V.
Hence O

(VaTaghow = (Ea(¥1g 0 B))p = (XaXslg © )

We obtain a simi’izii‘"f ormula by interchanging the indices 1, 2; sub-
tracting we then/fird
~b

AV (@, Yigaw = (X5, Xilg 0 e
whence A3y Yl, = d,((X1, Xdls), which proves Proposition 2

N/ §VI. SUBMANIFOLDS. DISTRIBUTIONS

Definition 1. Let U be a manifold. A manifold W is called @ sub-
manifold of U f the following condilions are satisfied: 1) the set of points
of W is a subset of the set of poinds of Vs and 2) the identity mapping of
W info U is regular al every point of W,

¥or example, an open submanifold of ¥ (as defined in $1L, p. 73)
is 2 submanifold in the sense of the present definition. In the case -
of an open submanifold ‘W of U the identity mapping of W into U is



o
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alsg a homeomorphism, but it is important to realize that this is not
always the case for an arbitrary submanifold of U.1 It is true, how-
ever, that this identity mapping ig slways continuous.

Let I be the identity mapping of a submanifold W into a manifold
©, If pew, and if f is a function analytic at p on U, the function
f oI isanalytieat pon W. Thisfunction w ill be called the contraction
of the function f to W. From Propositien 1, §IV, p. 76 it follows
that we can find a coordlnato system {zy, * - -, £a} at p on UV such
that the traces z:01, -+ -, @nOf of &y, - - -, & O1 W orm g
coordinate system at p on ‘W (where m is the dimension of\W). Tetyg

A

be an analytic function at p on W; then g may he expl esqect in % neigh-
bourhood of p in W, a3 a functmn g¥z 01, A MmO ) of the
coordinates x0T If we set flg) = ¢*@g), 7Y , T=(9)), [ 18
analytic at p on U, and f © I coincides with g on & nelghbourhnod of p
in W. Therefore, any function which disldnalytic ot o point peW
caotneides in @ neighbourhood of p on W wth the contraction of a funclion
which is analytic ¢f p on V. .

However, it is not always true Lhﬁal funection which is éverywhere
defined and analytic on “® commdes with the contraction of a continu-
onus funetion on U. &

Let £, be the tangent space” to U at a point p which belongs to the
submanifold Ww. The mappmg dl, maps the tangent space to W
at p isvmorphically ombova vector subspace 91, of ¥, The space 9,
is also called (althgygh'improperly) the tangent space to W at p.

Let X be any ‘analytic infinitesimal transformation on U, such that
X e, for cyéry point pe'W. Since I is everywhere regular, there
exists one and/only one analytic infinitesimal transformation ¥ on W
such that‘)‘(p = dI,(Y,) for all pew. The infinitesimal transformation
Y isscalled the contraction of X to W. From Proposition 2, §V, it
folléws that if X, X are analytic infinitesimal transformations on 0,
and' Y, Y. their contractions fo W, [V, V] is the contraction of

:{Xh X,

Definition 2. An m-dimensional vector subspaee of the langent
space {o @ manifold U af a point p is called an elemenl of contact of
dimension m of V. The point p is called the origin of this element of
condact. A law which assigns lo every poind pe¥ an clement of contacl
of dimension m and of origin p is called an m-dimensional distribution.

! For instance, a mon-compact one parametric sub-group of 12 may be con-
sidered as the underlying set of points of a manifold which is analytically iso-

morphie with BL The identify mapping of this manifeld into 7 is analytic and
regular everywhere, but is not a homeomorphism with a subspace of T
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Let us denote by 9 a distribution of dimension m on U, and by
a1, the m-dimensional subspace which is assigned fo the point p by .

Definition 3. We shall say that the distribulion M 43 analytic al
the point p if the following conditions are satisfied; there exists a neighbour-
hood V of the paint p and a system of m infinitesimal {ransformations
Xy, - v ¢y Xm defined and analytic on V, such that, for every pornd
gzV, the vectors (Xia * 7 0, (X} form a base of the space M,. The
system { Xy, - 0 5 X} 18 then called @ local base for the distribution
around the point p. ,

Remark. There do not always exist analytic distributions on ‘a
manifold. For instance, it can be proved that there is no anafyhic
distribution of dimension 1 on a sphere of dimension 4, O

Sinee there always exists on a manifold of dimension 7 ax, obvious
digtribution of dimension =, it follows from the precquing remark
that, given an analytic distribution, it is not always possible to find a
system of analytic infinitesimal transformations which forms a base
of the distribution at every point. PN

Definition 4. Let I be an onalylic disifﬂ}u‘tion on a monifold V.
A submanifold W of U 4s called an integral wpanifold of 9 if, for every
point pew, M, coincides with the tangenigpace to W al p.

Tet o1 be & distribution, and let X, X¢ be infinitesimal transforma-
tions, defined in a neighbourhoodjf’j}f a point ps, and such that (X 1o
(Xs), both belong to M, forrall points peV. If py belongs to an
integral manifold "W of 91, ‘X}sand X, have contractions ¥, ¥ to W;
therefore [X3, X has the eontraction [V, Y.l it follows that [X,
XofpeM,,. This shows, thab certain conditions must be gatisfied if a
distribution is to ha@e an integral manifold through po.

We shall say-bhat an infinitesimal transformation X, defined and
analytic in a neighbourhood of a point peed, belongs to the distribution
m if we h;§e XM, for all points p of this neighbourhood. For
instance,tany infinitcsimal transformation of a base of 9 around p
belomgs;\td AL,

Definition 5. We shall say that the analytic distribution I is
involutive if the following condition is satisfied: if two analytic infinitesimal
transformations X1, Xo, defined on the same open set, both belong to 4R,
the infinitesimal transformation X1, X 1) also belongs fo M.

From the preceding remarks, it follows that, if every point of U
Lelongs to an integral manifold of 97, 91 is necessarily involutive. In
the following sections we shall be conceried mainky with the proof of
the converse of this proposition,

We shall conclude this scetion with the proof of:
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Proposition 1. Lel T be a set of analytic infinitesimal transforma-
tions defined on o manifold O, with the following properties: 1) the space
M, spanned by the veclors X, (pe0, XeZ) has the same dimension, m, al
all points pe; and 2) if X, YeZ, the infinilesimal transformation [X, Y]
moy be expressed as a linear combinalion of e finite number of elements
of Z, the coefficients being functions on V. Then the assignmené p — M,
is an analyfic involulive distribution.

Let po be a point of U; we can find m elements Xy, - + - |, X, of
Z such that (X1)p, * * ¢, (Xu)p, are linearly independent, aftd hence
span 9, Let {z), - - -, 2.} be a coordinate system at“p,. The

rectangular matrix whose coefficients are the functions Xgip) < ¢ < m,
1 < j < m) is of rank m at po; being continuous, it i$.also of rank m
at all points p of some cubic neighbourhood V ofépm.” Tt follows that
the distribution 91 is analytie, the elements X,/ - |, X,. forming a
base of M around p, \

Let X be any analytic infinitesimal txdisformation defined on a
neighbourhood of pe and belonging tp'}ﬁt: We may assume that X
is defined on V, and that X, = 224:(p)(X,),. We assert that the
functions g;(p) are analytic on ¥\VIn fact, they satisfy the linear
equations R\

(1) (Xz)p = zfgffﬁ(XfEk)p (1 £k =< n),

whose coefficients are “ana;lirtic on V; moreover, the matrix of the
cocificients of gl(p),m{’- ", g»{P) has rank m at all points of V. In
the neighbourhood ©f ary point peV, the values of the functions gi{(p)
may be found b§\§()lving a suitably selected system of m equations
from (1), and &his proves their analyticity,

Let Y:=:\ Zh,X; be another analytic infinitesimal transformation
dcﬁned"f;h“V and belonging to 9. We want to prove that [X, ¥]
belol 840 9. Tt is obviously sufficient to carry out the proof in the
cage where X = ¢gXi, ¥ = AX;, for g, h any two analytic functions on

? And ¢, j any two indices between 1 and m. Weo have

NN

< YLK, Y] =YX - XY = a(Xi9)X; + ghX,X: — ghX . X; — g( X X;
= (MXg)X: — (@(XA)X; + ghlX,, X,).
But [X;, X;]is a linear combination of elements in % and hence belongs
to 3%; i6 follows that (X, ¥] belongs to M, which proves Proposition 1.
§VIL. INTEGRAL MANIFOLDS OF AN INVOLUTIVE DISTRIBUTION
(LocAL THEORY) '

Let U be a manifold, and let {z,, - - - | &.} be a coordinate system
at a point peV. Denote by V a cubic neighbourhood of p with respect
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to this system, and by a the breadth of V. Let m be any integer <n,
and let £np1, © © 5 £a be m — m numbers such that |tmsn — Tmin(P)]
<a (1< h$n—m). Denote by S the sct of points gg8V whose
coordinates satisfy the conditions

Tmiilg) = Emih (1 ShEn—m.

We can define a manifold §; whose set of points i S: by the condition
that the contractions of z1, * * *, Tm 10 &¢ shall form a system of
coordinates at every point of §z. It is obvious that §¢ is asubmanifold
of 0. We shall say that §; is the sizce of V defined by the equations
Lk = Emth (1 £h&n—mh w\:\

Theorem 1. Let I be an analytic involutive distribution of dimension
m on @ manifold of dimension n. If pis ony point of UV, tfyg?é exist a
coordinate system (T, + © T} at pond @ cubic neighpqﬁrhobd Vofp
with respeet to this system which satisfy the followgng Conditions: 1)
z(p) = 0 (1 £ i € n);2) lef a be the breadth of V aweb¥et Enpr, - 0 5 En
be any n — m numbers such that (Enial < 0 NS R < n — m); then
the slice of V which is defined by the equatighs§ T = Emih (1<h<
n — m) is an integral mopifold of M. P N\%

We first prove o\ o

Lemma 1. FLet X bean z'n_ﬁm'tese'qj@a transformation which is defined
and analytic in a neighbourhood of ‘@ point pe¥ and which is such that X,
# 0, Then there exist @ coordindte system {yy, © ~ y.} af p and a
cubic neighbourhood W of pwith respect o this system which satisfy the
following conditions: yi N2 0 (1 €4 < n); X ds defined on W and
coincides on W with\the infinitesimal transformation whose symbol
{with respect o the {;rlénordifzates) is 9/ dyy.

We can find{a>eoordinate system {2y, © * * 2.} at p such that
X,z # 0. _IettZ be a cubic neighbourhood of p with respect to this
system omMch X is defined and anajytic, and let ¢ be the breadth
of Z. Ihyez, we have X2 = Filzdg), - -+ 2a(gh) <18 m),
wheré ¥he functions Fy are defined and analytic in the cube defined
bintHe inequalities |2 — w(p)| <e. We consider the following system
of differential equations:

dz;

(1 —
) dt
Making use of the existence theorem for systems of analytic differ-
ential equations, we obtain the following result: there exist a number
by such that 0 < by < ¢ and a system of n fupctions eiyy - 5 Yn)
(1 € 1< n), defined and analytic in the cube @ specified by the

= Filzy, * * * +2n) (1€i<n
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equalities |5 < b1 (1 € ¢ € n) such that: 1) Je(yy, - - -, ¥a)| <o¢
whenever (y1, - * ', ya)881; 2) the equations z; = rpi(%, Y2, * - , Yo
represent a solution of the system (1) with the initial cond‘ltwns
230, y2 * * 0, ya) = 2D, @0, w2, + *  ,y) = ¥+ z(p) fore > 1

We shall prove that the functional determinant D(wy, - - -, @u)/
D@, »+ ¢y is #0Owhenyy = - - - =y, =0. We have

(22) = ret), - mo) = X # 0

6y1 o N\

On the other hand, if § > 1, (3¢:/9y;)e = 8 because ¢:(0, g, T+, ya) =
(1 — 81y + z:(p). Our assertion follows iJ.llInedia.Eéi}* from these
formulas. A\

Tt follows that there exist a coordinate systesnfyy, -« , ya} atp
and a cubic neighbourhood W of p with regpest“to this system such
that W ( Z and 2{g) = ey:(q), - - ,Nlg)) for every geW. If
geW, we have AN

Y
X = Filal@), - 2SS 0l - o)

whence X = 4/dy,in W. 2N
Now, we proceed to prowe Theorem 1. Let {X;, - - -, X} be
a base of I around p.,j:V% have (X1), # 0, and wc¢ may apply
Lemma 1 to X1 Letfyy, © - -, ys} be a coordinate system at p and
W a neighbourhoogk}af 7 which satisfy the conditions of Lemma 1
for X1, W beingifirthermore taken so small that (X1)g - - (Xme
form a base oRJN, at every point ¢eW. Tt is clear that, if m = 1,
the slice of, Wyhich is defined by the equations gy, = &, + + -, yn =
{where g2 -, &, are any numbers which are smaller in absolute
value #hon the breadth of W) is an integral manifold of 9%, which
prq@('s"Theorcm 1 in the case where m = 1. To prove Theorem 1
i'n’.’;the general ease, we proceed by induction on m. Assume that
(m'>1 and that Theorem 1 is true for distributions of dimension
) m — L. It is clear that we can find m — 1 functions Az - ¢y Am
analytic on V, such that (X; — A:X)y; =0 (2 < 4 € m). We set
X; = X; — AXq; then (X4),, (XD, - - - , (X7), form a base of M,
at cvery point geW. Let % be the slice of W defined by the equation
yr = 0. If geX, the vectors (X7), (2 € ¢ € m) are tangent to X at g;
it follows that X;, - - - | X' have contractions Xy -, X, to X
If geX, the space spanned by the vectors (X,),, - - - , (Xm), is the
intersection of M, with the tungent space to X at 9.  The distribution
M, ¢ — M, is clearly analytic on . On the other hand, it follows
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immedi_a-tely from Proposition 2, §V, p. 82 that M ig involutive.
Gince M is of dimension m — 1, we may apply our induetion assump-

on to T, We can find a system of coordinates 2z, « - * Fmatpon
o and a cubic neighbourhood V of g with respect to this system with
the following properties: Z:(p) = 0 (2 < 1 € n)if Emgy, 0 0, En BT

aumbers smaller in absolute value than the breadth a of ¥, then the
dlice 8¢ of V which is defined by the equations Zmir = Eme {(L£h
£n—m) is an integral manifold of . We may furthermore
assume that a is at most equal to the breadth of W. Let V be the set
of points g¢W which satisfy the following conditions: the poinkly
whose coordinates are (0, ¥2(¢), * * * 5 y.(g)) lies in ¥V and lya (gl < a.
1f gV, we set z1{q) = y:(@), @) = 7:(q) for > 1. Tt is €learthat
{1y, -+ =, za} i3 & coordinate system at p and that (V.}‘ié a cubic
peighbourhood of p with respect to this system. Moredver, since
2o{), + -+, %a(g) depend only upon ya(g), * e yal) and xa(g)
= y1(q), the symbol of X; (with respect to the coodditates 1, - * * ) Ta)
is 8/8x1. ‘,"\\:
We have X = 0 (1 € b € n — m)y whence

2 A
P (Xitmpn) = XX Eaph = [X:, Xa)zmin
1 KA

Since It is involutive, we haye' X7, X1 = gaX1 + E}’;zgﬁX; where the
functions gy (1 € ¢, § & m)are analytic on V. Therefore,

J &

@) “"'\(X::"f'm%) = ELQ'«;(Xg%H)

75821

AS
Since any §: jsoah integral manifold of M, we have Xipe = 0 o0
%, e for (= 0. Considered as funetions of &y the functions
Xizmin (0€ 7 € m) satisly the linear homogeneous differential system
(2). Jgfollows frorn the uniqueness theorcm for systems of differential
equétti’uns that Xiaps =0 identically on V. This means that any
Jdicd of V defined by & system of equations of the form Tmpn = Emin
(I £h<n—m)isan integral manifold of Pt. Theorem 1is thereby
proved for distributions of dirpension .

Proposition 1. Let M be an analytic tnvolutive distribulion on @
manifold 0. If two inlegral manifolds W and ' of M have @ potnt P
in common, there exisls an integral manifold of M, containing P, which
is an open submanifold of both W and W'

We use the notation of Theorem 1. Let Qo be the slice of ¥V which
is defined by the cquations Zmws =0 g<hsn—m. It will be
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sufficient to prové that any integral manifold W of 9 which contains p
has an open submanifold which is also an open submanifold of S,
Since the identity mapping of W into U is continuocus, the set
¥V M@ is relatively open in W. Because ‘W is locally connected, the
connected component ¢ of p in ¥V /W (in the topology of W) is a
relatively open subset of .1 Therefore, C is the set of points of an
open submanifold € of W, which is an integral manifold of .
Denote by X, the infinitesimal transformation whose symbol {(with
respect to the coordinates xy, -+« , @,) is 8/8x;. Then, if geV, the
vectors (X1)g, * * ¢, (Xm), form g basc of M,. On the othéthand, if
geC we know by Proposition 1, §1V, p. 75 that we can sélert m of the
functions a1, - -+ -, 2. whose contractions to € forffy'a system of
coordinates at ¢. Since Xtmn =0 (1 £ 1< mpd € 2 € 2 — m),
none of these functions can be of index >m, whi\ch’proves that the

contractions of &y, - -+ -, z, to € form 2 systg%f@\{\)f coordinates at any
point of €. ’
If ge@, the vectors (Xy),, + + + , (Xglpdorm a base of the tangent

space to C at ¢. The equations Xz = 0 imply that the differential
of the contraction of xn.x to € ig\Dy'therefore each function zma i8
constant on € (1 £ k€ n —m)"(Cf. Proposition 4, $§IV, p. 75).
This means that @ is a subseb of $. Because the contractions of
Tyttt , Twto @ form a sjfstém of coordinates at overy point of @, @
is an open submanifold of'8s. Proposition 1 is thereby proved.

§VIIL. MAXIMAENINTEGRAL MANIFOLDS OF AN INVOLUTIVE
N\ DISTRIBUTION
Let 0 be glmanifold, and let M be an shalytic involutive distribu-
tion on VAN
We shell now study the integral manifold of M in the large, instead

of li {iing ourselves to the consideration of a neighbourhood of a
paibof . .

.,\'fj"Let V be the set of points of V. We shall define a new topology
won the set V. Let 0 be the family of those subsets of ¥ which may

be represented as unions of collections of integral manifolds of 9; ©
may be taken as the family of open sets in a topology on V. In fact
1) Any union of sets of © obviously belongs again to ©.
2) Let Oy, O, be any two sets of 9, and let p be a point of 0, M O
Then there cxist two integral manifolds W 1, W2 of I hoth containing
p, and such that W, ( Oy, W, ( O, Proposition 2, §VII, p. 88

! Infaet, if geC, there exists & conneeted neighbewrhood of gcontained inw MY,
and therefore also in .
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shows that W1, Ws have in common an integral manifold W which con-
tains p. We have peW( O ™ 0y, which shows that 017028 0.

3) Any open subset U of U belongs to ©. Infact, let p be a point
of U/; there exists an integral manifold W of 9 such that pew. Since™W
is locally connected, the component of p in W U is an open subset
of W1 as such, it is the underlying space of an open submanifold W,
of W, and Wi is clearly an integral manifold of M with pew (O
This proves that Uego. If follows in particular that Teo. F urther-
more, we sce that if p1 7 ps, we can find sets O, Oy in O such that
p1€01, p2802, O 0, = ¢.

Let B* be the topological space defined by the family of opensets
o. We shall prove that, if W is any integral manifold of MW is a
subspace of B*.  Let p be any point of w, Then: A\

1) Any neighbourhood of p with respect to W (:Qr:ﬂ:-ﬁins an cpen
submanifold of W this submanifold helng an integratmanitold of M, it
is & set of © and is therefore a neighbourhood of pWwith respect to B*,

2) A neighbourhood of p with respect o B dontains a sct O such
that pe0, Oc0; taking into account the defipition of ©, we see that O
containg an integral manifold W of M egntaining p. According to
Proposition 2, §VIL, p. 88 W1 W ydpntains a neighbourhood of
in W, N

From 1) and 2) it follows at cm ' that W is an open subspace of BF.

Let & be any (:()nnectegl"{:oihponent of B*, this connected eom-
ponent being considered a{s~§,.subspa(':.e of B* We shall prove that T
is the underlying spac 4fan integra) manifold of <M.

Tn order to do this, we first select for every point peV some integral
manifold ' (p) I containing p. If pe®8, W'(p) i¢ an open con-
nected subsct of ¥, whence, w'(p) ( W We denote by @(p) the
elass of real ¥alded functions which are analytic at p on W'(p). These
functionsfrlx:@r be considered as functions defined on neighbourhoods of
p in WS We assert that the gssignment p — @(p) defines a manifold
011'4{3;\' "The conditions I, 11 of §1, p. 68 are obviously fulfilled; the
ﬁeigﬂbourhoud V which oceurs in condition TII being selected as a
neighbourhood W’ in W'(p) which satisfies condition 11T for W (p)
the conditions 1II, 1), 2), are fulfilled. As for IT1, 13), we observe
that if gg W', the manifolds W' (p), W’ (g) have in common a gubmani-
fold which is an open submanifold of hoth, from which it follows
immediately that condition 1L, 13) is satisfied.

Let % be the munifold defined on 9% by the assignment p — a(p).
If pew, "W (p) is clearly an open «ubmanifold of W, and therefore W

1 Cf, footnote 1), p- 92.
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iz 2n integral manifold of . It iz obvicusly independent of the
choice of the manifolds W'(p). Since we have W'(p) W we ste
that any integral manifold of 98 which has a point in common with
W is an open submanifold of .

We have now proved

Theorem 2. Let U be a manifold, and let M be an tnvolutive dis-
tribution on V. Through every point pe0 there passes o maximal
integral manifold W(p} of M, i.e. an integral manifold which is not a
subset of any larger integrol manifold.  Any integral manifold contafning
p is an open submanifold of "W (p). A

Remark. The mazimal integral manifolds are obviousj-\y‘u-\niquely

characterized by the propertics stated in Theorem 2. . N

ol

§1X. THE COUNTABILITY AXIOMy),

Thus far we have not required that the urfdge\iying space of a
manifold U should satisfy the Huugdorff countabulity axioms., "These
axioms, however, hold for the man-ifold?.,i\?h‘ich we shall consider
later, and this fact has certain importansbofisequences.

Let us call a subset of a manifold Pwhich is a cubic neighbourhood
of one of its points, with respect to a'puitable coordinate system at the
point, ¢ cubic subset of ©, It igh\clear that the countability axioms
hold in U if and only if canybecovered by a countable collection of
cuble subsets. An equivalentform of this condition is given by the
following;: K

The countability Q%Jms hold tn a manifold C if and only if U ean be
represented as the union of o countable family of compact subsets of .

In faect:

1) Suppose™{fat the countability axioms hold in . Then U
can be reppgséﬂ’i;ed as the union of a countable family of cubic subsets.
Each of them is homeomorphic to a cube in E=, where » is the dimen-
sion of \;'since a cube can be represented as the union of a countable
familysof compact sets, the same holds for U,

”\;2'}’ Suppose that U is the union of & countable family (Ky, - + -,
k‘m, -+ ) of compact subsets. Every point of K,, has 5 neighhourhood
'in U which is a cubic set. Since K., is compact, it can be covered by a
finite number of these cubic sets. This being true for every m, 0 ean
be covered by a countable family of cubic sots.

Now let us consider an involutive distribution IR on a manifold ©.
As we have seen (Theorem 1, §VIT, p. 88), every point 20 has a
neighbourhood V which ean be decomposed into slices, cach slice being
an integral manifold of 9. Let 49 be the maximal integral manifold
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containing p. Then, the intersection ¥ ™Ay is the union of a certain
set of these slices. Since two different slices arc disjoint, a compact
subget of & can mect at most & finite number of the slices. If the
countability axioms hold on W, it follows immediately that the
‘ntersection. VW is the union of at most comtably many of these
shices.

Let S, be the slice containing p. Then, obviousty, S coincides
with the connected component of p in W AV, this connected com-
ponent being tuken in the sense of the topology of W. But, #vV W
contains ab most countably many slices, S, is also the-connectd
component of p in the set ¥ W, in the gense of the topology.\p{ .
In order to prove this, we may assume that V is a cubic ngighbour-
hood of p with respect to a coordinate system {zy, * * - ,;r\,,}‘ stch that

each slice of V is represented by equalions of the form 2
L

AN
Eeg1 = Terrpr), © 7 T = Ta{pih,)

py being a point of the slice. Let & be the mdpping of B* into R~
defined by a(®y, * ©  ; Ta) = (Feps, 7 o 4&,)  Under our assump-
tion, & maps VW onto a countable subset of B, Since @ ig
continuous, it maps every connected ‘cothponent of V Ay {in the
sense of the topology of V) ontoa (;{j}zinécted subset of B>7. Nowany
connected eountable subsctof R"T’I’lfnusl; clearly consist of a single point;
this proves that any connected ¢omponent of ¥V W coincides with
a slice. \

Proposition 1. Let%li{f b6 an involutive distribution on @ manifold .
Let °% be an integrahmunifold of M. Suppose thot ¢ is an analyliic
mapping tnio UV of\’a:-man-ifold O and that the image under ¢ of the set of
points of U @'s'a\:s,ubset of W. If the countability axioms hold on "W, ¢
is an analylicwapping of U inle W.

Let s bed point of U, and p = (s} be its image inw. We select
a systemy of coordinates far, =+ °, Za} AL pOD 9 and & cubie neigh-
bourhdod V of p with respect to this system, with the same properties
asabove. Since ¢ is continuous, there exists & cubic neiglibourhood
U of 5 (with respect to some system of coordinates at s on W) which is
mapped by ¢ onto a subset of V. Moreover, since U/ is conncebed, the
same thing iz true of (L), Thercfore (L) 35 a connected subset of
V aw (in the topology of V). It follows that (1) is contained
in the siice Sq of the intersection ¥ 7 4w which contains p.

If fis any function which ig analytic at p on 1w, then f coincides on
a neighbourheod of p in 4 with the contraction of some function f1
which is analytic at p on U. The function f1 © ¢ 18 analytic at s on U,
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since ¢ is an analytic mapping of % into V. If we choose U s0 that ¢
(T7) is in the domain of definition of f1, o{ T} will also be in the domain
of definition of f (since ¢{I7) ( Si), and the functions f © ¢, f1 @ ¢ will
be defined, and will coincide, on. 7. Therefore f © ¢ is analytic at s on
U/, which proves that ¢ is an analytic mapping of U into W.

Proposition 2. Jf the countabilify axioms hold in o mamfeld U,
they also hold in any submanifold of C.

Teo prove Proposition 2 we shall first establish the following lemmas,

Lemma 1, Lel B be a connecled spoce. Assume that theresexisis
@ Jamily {Val of open subsets of B with the following properiiés>a) the
couniabilily axioms hold in every Vo, considered as a subspacéyof G, b)
there are ai most countably many indices 8 such that V, m;e}s a given Vg
of the family, and c) we have U.V. = B.  Then the countability azioms
hold in B. A

Let ay be any index such that V., # ¢; weghall say that an index
o is attainable in A steps from e, if there exigtehd sequence {aq, * * *
ax) of & 4 1 indices, beginning with o apdending with oy = a, such
that Ve, MV # ¢ (1 €4 € k). Lé6"4, be the set of indices a
which have this property. We shall\pfove, by induction on k, that
4, 1s countable. This statemenfistrue, by assumption, for & = 1.
Now assume it to hold for h; if &84 .1, there exists an index 84, such
that V. ™ Vi = ¢. Therq &i‘é’ only countably many indices 8 in A
and, for each of them, theré*are only countably many indices o with
Va ™ Vs # ¢; this praves our statement for A + 1. Let 4 be the
set UL, Ax; A is thena countable set. Weset V = Uz, Va; Vis an
open subset of Byand the eountability axioms hold in V. Let p be any
point adherenf4o¥; then p belongs to some V,. Since V, is open, we
have V™ Wy ¢, whence V. Vs = ¢ for some ged; if Sed», we
have GEEA{{*}, Va ( V, peV, which proves that V is also closed. Since
% is conhected we have V = 8: Lemma 1 is proved.

pgmma 2. Let B be a connected and locally connected space.

' Asswme that B can be covered by the union of a countable family of open

“8ubsels Vi (k =1, - - ) which have the Jollowing property: any com-
ponent of any one of the sets Vi satisfies the countability axioms. Then
the countability axtoms hold in B,

Let Vi be the components of ¥, o running over a set of indices
Ap. Taking Lemma 1 into account, it will be sufficient to prove that,
k, m and oed; being given, there are only countably many indices
BeAn for which Vo ™ Vo5 % ¢, The set V,, V2 is an open sub-
set of Vi.q;since the countability axioms hold in Vi, theset V., ™ Vi
has only countably many components K, (p = 1, - - ). Each K, is
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s connected subset of V., and therefore belongs to a uniquely deter-
mined component, Vasw of Vi Let 8 be any index such that
Ve Vg #= & if p is a point of Vie ™ Vs, p belongs to one of the
sets K,. This set K,, being a connected subset of ¥, and having a
point in common with Vg is contained in V5 whence 8 = B(p), which
proves our agsertion. .

Lemma 3. Let B be a connected space. Assume that there exisls
o continuous mapping ¢ of B into B with the following property: p being
any point of B, there exists an open subset V of B, containing p, which 18
mapped topologically under ¢ onto an open subset of R Then the"
countability acioms hold in B, O\

We can find = countable set { Ly, * - -} of open subsets of-f¢ with
the following property: r being any point of B¢, any neighlg(,}}lﬁiood of r
contains some set Ife. We may furthermore assume thab the sets U
are connected. If & is any integer >0, we considef'\‘the family of
those open subsets Vi. of B which afe mapped tapotogically onto Ul
under ¢; o Tuns over a set of indices A which Jay be empty for some
L. We assame that Vi % Vie for « # B Via has a point in
common with Vg, we have a = 8. In facklet ¥o, ¥s he the mappings
of Uz onto Vie, Ves. regpectively whic-h:ai‘e reciprocal to the mappings
induced by ¢ on these two sets, afith let W be the set Via " Via
Assume for & moment that W has w boundary point p in Vie; then
we have p = Hm p., where (pa)¥is a scquence of points of W. We
have therefore, ¢{p} = lim(é(q;.,a) and wale(p)) = lim $slelpa). Yor
any point geW we cleas y\htfve slplg)) = g, whence Yelp(p)) = lim pa
= p; on the other hiud the point $s(e(p)) 18 in Vg and hence isin w.
This shows that p\t—:W,’ which, because W is open, is a contradiction.
Therefore W had 1o boundary point in Vie; this latter set being con-
nected (because/it is homeomorphic to Uy), we have W = Vi The
same argumient would show that W = Vs, whenee & = 8. Because
the sets J.. are open it now follows that they arc the components
of Vo s Usee Via- Turthermore, it is clear that the countability
aﬁoi‘r{:‘s hold in overy Vi« and that every point of B belongs to one
of the sets Vi Thercfore, Lemma 3 follows from Lemma 2.

Lemmad. IfVisa d-dimensional submanifold of R#, the couniabil-

ity axioms hold in 0. . .
Let z; (1 €4 < n)be the contractions to U of the coordinates 1

Re. TetI = {é1, * ' - ,%a} be any set of distinet numbers between 1
and n, and let V; be the set of points of T ab which the functions
Ty zi, form a coordinate system on U; V,is an open subset of U,

and every point of U belongs to oné of the sets V. Let V' be any
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component, of V; and let ¢ be the mapping of ¥’ into R? defined by
ol(p) = (@hip), =+, widp)H(peV"); it {ollows immediately from
Lemumoa 3, applicd to the space 7’ and the mapping o, that the count-
ability axioms hold in V' Lemma 4 then follows from Lemma 2.
We can now prove Proposition 1. Since the countability axioms
hold in U, we may cover U by a countable number of open subsets
Ve (1 <k < ), each of whichisa cubic neighbourhood of some point
of U with respect some system of coordinates at the point. Sct
W, = VW, where W is a submanifold of C. The sets W, are
open in W. 1f W, is a component of Wi (in the topology of WY, Wi,
considered ag a subspace of W, is the underlying space:éﬁ}in apen
submanifold W/ of W. Considering Vi as a subspace oD, it is the
underlying space of an open submanifold Uy of U, and’ W} is a sub-
manifold of Vs, Since V; is a cubic neighbourhood &ith respect tosome
system of coordinates, Uk is analytically sopigphiic to an open sub-
manifold of B (where n = dim ). Tt follows that <&, is analytically
isomorphic to a submanifold of i, Byj&?nma 4, the countability
axjoms hold in ‘W;. By Lemma 2, theeduntability axioms hold in W,

A\
)
s W



CHAPTER TV
Analytic Groups. Lie Groups

Summary. Chapter II was concerned with the study of greups which
are at the same time topological spaces. Now, we shall consider groups
which are at the same fime manifolds; this leads to the notion of an analytic
group, which is delined in §L.

The most important new coneept brought about by the introduction of
analytic groups is the conecpt of the Lie algebra, which is defined in §IkN
To every analytic group there is nssociated a Lie algebra, and the relabion-
ships which may hold between analytic groups have their counterpart/ in
the corresponding relationships between Lie algebras. Thus, thenanalytic
subgroups of an anslytic group G correspond to the subalgebuisiof the Lie
algebra of § (Theorem 1, §IV, p. 107), and the gnalytic Hdgromorphisms
of an analytic group § into an analytic group ¥ correapo)ld‘ to the homo-
morphisms of the Lie algebra of § into the Lie algebrajef 3 (Theorem 2,
§VI, p: 111). The analyfic groups which are considered here sre not

necessarily closed subgroups and are not Iiecessarﬂy\ opological subgroups,
although they are gubmanifolds. It is shown'\;\; §V that, if an analytic
subgroup is closed as a set of points, it is neatsgatily s topological subgroup.
If § is a topological subgroup of an analyti€ group § such that the con-
nected component of the neubral elementin § is the underlying topologieal
group of & cloged analytic subgroup of \§, the homogencous space g/H hasa
structure of manifold which is definiedl in §V. Lf O is distinguished, G/
is an analytie group. It is shega jn §VII that the Lie algebra of G/ is &
factor algebra of the Lie algebranol G- _

The notion of exponextial ‘miapping for matrices can be generalized to the
case of an arbitrary aralytie group. Thus, the elements of the Lic algebra
of an analytic group §ean be used to represent parametrically the elements of
a neighbourhood aixtheé neutral element in §. The definition of this general-
ized exponential tupping is the object of §VIIL. The exponential mapping
is nsed in $1X t¢”complete the indications which were given in §VII on the
homomorphisms of analytic groups. o ‘

In §X)'it is shown that the addition and bracket operation in the Lie
algebganeorrespond (approximately) to multiplication and the building of
cofattitators in the group. _

Tn §XI, it is shown that an analytic group G has a representation k_)y
linear transformations operating on the Lie algebra of the group. From this,
one can deduce that an snalytic group whose Lie algcbra ha_s no center
# {0} is at least locally isomorphie with a subgroup of the linear group.
Furthermore, it is proved that a given Lie algebra can be represe_nted as the
Lie algebra of some analytic group provided its center contalns only 0.
That this proviso is mot really NCCESSATY will be proved mueh later {in
volume 2}, .

In seotion XTI, it is proved that the commutator subgroup of an analytic
group is the underlying group of an analytic subgroup, the derived group.

99
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An analytic group bears ipso facto the structure of a topological group;
it is shown in $XIII that the analytical structure (and in particular the Lie
algchra) is uniquely determined in terms of the topological structure (Theorem
3, p. 120). This remarksble faet holds only for real analytic groups, not
for groups with complex parameters (Cf. volume 2). To avoid the con-
dition of connectedness which was involved in the notion of manifold, we
define a Lie group to be a locaily eonneeted topological group & such that the
component of the neutral element in & is the underlying topological group
of some analytie group {which is then uniquely detcrmined). It follows
from this last fact that we may use freely the concept of Lie algebra when
dealing with Lie groups. N\

In section XIV, we derive a sufficient condition for a topolegical group
to be a Lie group. Our result is a slight generalization of thegestlt of Car-
tan according to which any closed subgroup of a Tie group is’(:?t Lie Group.

In section XV, we show that the group of automorphisims of any algebra
whatsoever on the ficld of real numbers is a Lie group. o this, we deduce
that the group of automorphisms of a eonnceted Lie. {{r'o{lp is & Lie group.

§1. DEFINITION OF THE NOTION OF ANALYTIC GROUP. EXAMPLES

Definition 1. An aralylic group is ‘;ﬁ\’w (0, (7} formed by 0 mani-
fold U and o group G which salisfyheYollowing conditions; 1) the set
of points of U coincides with the sebbf elements of G; 2) the mapping
(o, 7) = o771 of the manifold UV X% into U is everywhere analytic,

The manifold U is calledthe underlying manifold of the analytic
group. The underlying togological space of C is also called the under-
lying space of the group{\Since every analytic mapping is continuocus,
the pair formed by the underlying spaee and the group (7 is a topo-
logical group, which is called the underlying topological group of the
analytic group("\This topological group is obvicusly connected and
toeally simpl#eonnected.

The agl@iﬁive group of K*, associated with the manifold R» which
was eﬁ?xed in Chapter IIT, §II, p. 73 is an anglytic group which we
shall’again denote by Kin.

.'\,j “We now consider the group GL(n, C). If ¢ = {z4(c}) Is & matrix
0 this group, we denote by a};(s) and z{/(c) the-real and imaginary
N parts of z5(c). If we assign to ¢ the point $(e)eR?”" whose coordinates
are the numbers 2((¢), z¥(o) (arranged in some fixed order), we obtain

a homeomorphism, ®, of GT.(n, ) with the subset of K2’ composed

of the points for which
<0

This set is open. On the other hand, the group GL(n, C) is connected.
Hence we may define a manifold U whose underlying space is the
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underlying space of GL{n, C) by the requirement that the 2n? functions
al;, i shall form a system of coordinates at every point of U (Ci.
Chapter 111, §11, p. 73).

The quantities zj(em"), ¥ (v~} may be expressed as rational func-
tions of the z,(e), x4(r), e}, =i (+), and the denominators of these
rational functions are 0 on GL{n, €). Tt follows that the mapping
(5, 7) — or—' iz analytie, which proves that the paic formed by U and
GL(n, €) is an analytic group. This analytic group will again be
denoted by GL{n, C). ,

Finally, let us consider the torus group T, ie. the factor group
of R by the group of integers. We have defined the topological ghiace
T4 a5 the underlying space of a manifold 77, and we have seen ghat the
functions cos 2rr, gin 271 are everywhere analytic on 7' and, that, at
each point, one of them is a coordinate on T, The for;n;iﬁlaé

A\
cos 2r(z — V) = cos 2ax cos 27y + sin Zrpin 2rh)
sin 2r(y — Y) = sin 2my cos 27y — sin %n cos 271

A

show immediately that the manifold T* and thévgroup T, considered
together, make up an analytic group, whichhwe shall also denote by 7.

Now, let § and 3¢ be two analytic grgups, U and W their underly-
ing manifolds and & and H their undm‘fymg groups. Then the product
G X H is a group, and the set of ‘s[éjnent-s of this group is also the set
of points of U X W. Let ((gs 7 (o1, 1)) be a pair of elements of
G X II, with o, 016G and 7, z4&Jf. The mapping ({s, 1), (o1, 7)) — ((o,
ey, (r, 71)) of (U X w{&f(v % W) into (0 X V) X (W X W) is
obviously analytic. Fhe'mappings (s, o1) — a7, (7, 1) —oryt o
U ¥ U inte U and o:E’ A X W into W are analytic by assumption. Ii
follows easily t 4t>the mapping {(o, ay), {r, ) — (go7", 777} of
(0 X V) X (WX W) into VX W s analytic. Fence the same is
true of the-apping (@, 7), (Fy, 7)) = (o Dlon 774 = (oY, 777
of (0 X&) X (U X W) into U XW. This means that the pair
formed by the manifold © X W and the group G X H is an analytie
gr(mp} which we shall eall the product of the analytic groups § and &
and denote by G X 3. We can define in a similar way the product
of any finite number of analytic groups.

§II, THE LIE ALGEBRA

Let g be an analytic group. We denote by g- the tangent space
to § at the point 0. If ¢ and 7 are any elements of G, there exists a
unique element p(p = r¢~') such that the left translation assoclated
with p maps ¢ on 7; we denote this left translation by ®, = ®ro-.
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It follows immediately from the definition of an analytic group
that the mapping £— £ of G into itself is analytic. Henco the
mapping £ — p§, which is obtained by performing successively the
mappings £ — £ and §— p&, is also analytic: cvery left translation
in an analytic group is an analytic isomorphism of the underlying
manifold with itself,

It follows that the mapping ®, has a differential d#, which maps
g, isomorphically onto g,.

Definition 3. An infinitestmal transformation X on G 28 sm{i to be
left invariant if, for any o, 718G, we have

¥, X, = X,

O

¢ ’\ *
Let e be the neutral element of §.  In order for X, te ‘be left invari-
ant it is sufficient for the equahty de. X, = X, @ beld for every reg-
In fact, assume that such is the case, smced\, 21 18 the reciprocal

mapping of &, d¥- is the reciprocal mapping of d®, and we have
X, = d®,-.X,, whence PN\

X, = d&,(d®,X,) = d(rbf.q}b,-,)X., = 4%, X,

It follows immediately that,, givén an element X,gg., there exists
one and only one left invacianf ihfinitesimal transformation X which
takes the value X, ate. "

We shall now prove that every left invariant infintiesimal transforma-
tion X is tmalytfc Lof( g bo any element of §. We select a system
of coordinates { » } on § ut og and a cubic neighbourhood Vi
of 7y with 1espect \) thls 8Y &t.em There exists a cubie neighbourhood
Ve of oo suchethat the conditions oV, 72V, imply eoy'reVy.. Leto
be any elentefit of V; we have X,z; = (d@y0pXo)w; = Xo (15 O Prup).
The fung{mbns zile, 1) = zilooy ~) are defined and analytm on Vs X ¥z
we hiave/xi(s, 7) = files(a), « -+, Talo), ailr), - - -, 2a.(r}}, where
thesfunections filyy, » © * , #w, 21, * -+, 2z,) are analytic in their 2n
a,nguments in the neighbourhood of the system of values 4, = 2x{on),

@ N = anloo) (1 £ & < n). Wehave

X = B (Kos) (af‘)
Z.J o

where the indices o, ¢4 mean that the partial derivatives are taken for
v = 2ale), 2 = zulon) (1 € k& € w). The quantities X,x; are con-
stants, and (8/./82,)s.0,, considered as a function of ¢, is analytic at ¢o.
Therefore, the functions X,z; are analytic at o5, which proves that X
ig analytic at a,.

By
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Let X and Y be any twoleft invariant infinitesimal transformations.
We have

480X, Y1) = [d®(X), e V) = [X, Y]

which proves that [X, Y]is algo left invariant.

The left invariant infinitesimal transformations of g form a vector
gpace g of dimension # over the field of real numbers (where n is the
dimension of G). Moreover, the conditions Xeg, Yzg imply [X, Y]zq.

Definition 2. Let K be a field, and let g be a veclor space of finite
dimension over K. Suppose moreover that there is giver a law of conpt-
sition (X, Y) — [X, Y] in g with the following properties: A\

1. Itis bilinear, i.e. N\

(01X + 62Xs, Y1 = @l X1, Y] + 6l X, Y] (al, @K Y, X, Yl,)
(X, a:Y1 + a2Vg] = aa[ X1 V1] + 62X, Y.l X, VA

9. It sotisfies the following conditions: X, Xh= 0, X, Y], Z]
+ Y, 2, X1+ 12, X],Y]=0 (for any X, Y, Z8g). Theng, equipped
with this law of composition, is called a Lie c;%i;re}ra over K.

Remark. It follows immediately frpni:t- 1e definition that

[X, Y1+ 17, X1 =0 (X, Yeq);

because 3

0=[X+Y,X+7Y=1[X, X-’]f# X, Y] +1Y, X1+ [V, Y]
Q = [X, Y] + 1Y, X}

In terms of this &éﬁﬁ{tion, we sce that the left invariant infini-
tesimal transformations of an analytic group g form a Lic algebra
(whose dimensigfis equal to the dimension of Q) over the field of real
numbers. ThisJdie algebra is called the Lie algebra of G.

Instead(df the left invariant infinitesimal transformations, we might
have con%éred the right invariant infinitesimal transformations. i
¥, ishe right translation associated with an element 7, the right
i!&‘{ﬁl’\lant infinitesimal transformations Y are characterized by the
endition that ¥, = d¥,Y. for any 7eG. Lot J be the mapping & — £
of § into itself. It is clear that J is an analytic isomorphism of the
underlying manifold of § with itseli. Let X be any loft invariant
infinitesimal transformation; we assert that the infinitesimal trans-
formation Y defined by Y. = dJ(Xe-1) i right invariant. In fact,
we have

4, Y. = d¥,(dJ (X)) = d¥, 0 )X,

But ¥, 0 J maps an arbitrary element ¢ into -7 = («*£)~", whence
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¥.oJ =Jo®-. Therefore,
av. ¥, = dJ(de,-X.) = dJ (X, ) =¥,

which proves our assertion.

The right invariant infinitesimal transformations also form a Lie
algebra. But, since d7({X,, X.]) = [dJ(X)), dJ(X5}], this new Lie
algebra is isomorphie with the Lie algebra of lft invariant infinitesimal
transformations, and hence does not give any further information
about the structure of G. ~

§III. EXAMPLES OF LIE ALGEBRAS O\

FLet us first consider the additive group R of real ntipbers.  If we
denote by « the coordinate in R, there exists an jinfinitesimal trans-
formation X on R defined by X,z = 1 (for all astzt Phis infinitesimal
transformation is left invariant. Tn fact, let %fbé the translation cor-
responding to an clement a; then &5 = b % A (de. X o)x = Xolz 0 P
= Xolt + 0} =1 = Xz, which proves\our assertion. Tt follows
that X is a basie element of the Lie af[géahyra of R, which consists of all
multiples MX of X(AeR). PNY;

Now, let G and 3¢ he analytic “groups, and let g and b be their
Lie algebras, We know that $he’ tangent space to G X X at a point
{o, 7} of this manifold may beadentified with the product 0, X B, of the
tangent spaces g, and b, 40°G and 3¢ at ¢ and + respeetively, Let X
be a left invariant infinitesimal transformation on g and let ¥ bhe a
left invariant infinitesimal transformation on ¢, If we assign to
every (o, 1)eg X 5Cthe tangent vector (X,, ¥,) Lo g X aC at {g, 7), we
obtain an infjpi}esimal translormation Z on G X ae. We shall prove
that Z is eft/invariant, Let w1 and & denote the projections of

G X % o sGdnd ond.  The vector Z,.1s determined by the conditions
\&
'\‘. (IMJIZUI,- = Xa d(-_dzzrr,r = YT

Latsd,, ¥,, 6, be the left translations associated with o, 7, (g, 7)in g,

. :é}ld § X X respectively. We have
3

‘:Jl. o eﬂ.'r = "T-)o' 0 C"--’1'. 5-12 o OG‘.‘! = \Pf 0 aws
whenee, if ¢, 4 represent the neutral clements in g, ge,

doi(d0,.2,,) = d®,(diZ.,) = d&, X, = X,
A6x{d8s,Ze) = AV, (deZ ) = AW,Y, = ¥,

This proves that Z or = d0¢, 7., and therefare that Z is left invariant.
On the other hand, if Z and 7/ arc two analytic infinitesimal trans-
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formations on § X &, we have dalZ, ZN = ldaZ, dinZ] (=1, 2).
"This leads us to the following definition:

Definition 1. Lef g and b be lwe Lie algebras over the same field K.
Let us define the following law of composition in g K I

(X, 1), (X', ¥ = (X, X'}, [¥, ¥'])

We then oblain a Lic algebra whose underlying vector space 18 the product
of the underlying vector spaces of g and §. This Lic algebra is called the

product of ¢ and ) and is denoted by g X . ~
We have proved that the Lie algebra of the product of two anglytic
groups i the produtt of the Lie algebras of these groups. ¢(\A

The definition and the result may easily be extended ‘poliﬂle case
of the product of several Lie algebras or analytic groupsd™y

Tn particular, we see that the Tie algebra v* of the éjnalytic group
7 is the product of n Lie algebras identical with th't;.\L-i(', algebra v of
R. Now, if X, X' are any two clements of r, wachave [X, X'l = 0;
hence the same is trae of the Lie algebra of &8

Sinee T is of dimension 1, its Lic algebrans also of dimension 1, and
is therefore identical with v. If we call " the product of # analytic
groups identical with T, we sce tha,,tg’ihe Lie algebra of T™ 1s 1™,

We shall now find the Lie algébra of GL{n, ). The coefficients
z,(c) of & matrix 08GL(n, C) are; ffoinplex valued functions, whose real
and imaginary parts z;;(¢) and g, (o) are analytic functions on GL{n, C}.
If X is an analytic inﬁr}ilye}}imal transformation on GL{n, C}, we set
Ney = Xy + +/ —1 Ko

With every left @hwariant infinitesimal transformation X on GL(n,
) we associaid Ghie matrix (a4(X)), where ay(X) = Xy (1 < 1,
i € n) and whepe ¢ is the neutral element of GL(n, ¢). We obtain in
this way aliiear mapping of the Lie algebra gl(n, C) of GL(n, C) into the
vector spate M, (L) consisting of all matrices of degree » with real or
comp]\t‘:x"coeﬁlcients. (IR,.(C) is a vector space of dimension 2n? over
R\?n\ 3 ay(X) = 0 for all G, j), we bave X, = 0, because; he 2nt
fumttions zj;, i form a system of eoordinates at e Sinee X is left
invariant, it follows that X = 0, Our linear mapping is therefore a
linear isomorphism of gl{n, C} with a subspace of Ma(C). Since
al(n, C) and M, (C) are both of dimension 2n?, the image of gl{n, () 1s
the whole of M.(C).

Tt remains to compute the matrix (a;(1X, YD) when (a:(X}) and
(2:(Y)) are known, X and Y being twO left invariant infinitesimal
transformations. We have Xz = d@eX2ii = X (zi; © ®,), where &,
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is the left translation asscciated with an element g2GL{n, C). Hence
Xty = Zwa(@)Xay = Zzale)ay(X)

If we consider X,z as a function of ¢, we have
Y(Xor) = Zuaa{Van(X).

Let us denote by X, ¥ the matrices (a5(X)), (ai(Y)); then the matrix
whose coefficicnts are the numbers Y (X,2;) is ¥X , and the matrix
whose cocfficients are the numbers X.(V,a;) is XV. 1t fellows that
the matrix which corvesponds to [X, ¥]is ¥X — XF. \ \)

Therefore, the Lie algebra of GL(n, () is tsomorphgcaith the space
of all complex matrices of degree n, this space being equipped with the
following law of composition: (X, V] = Y& — ¥

Morc generally, if K is any field, the get of ~élll\matrices of degree n
with coefficients in K can be turned into a\Lie algebra over K by
defining the bracket operation by the fqnfnhm X, ¥] = ¥X - XV.

Let g be a vector space of finite dimension over a field K, and let
{Xy, » -, X} beabase of g over’KY If we want o define a law of
composition which will define a sfructure of Lie algebra on g, it will
obviously be sufficient to give the'expressions for the elemoents (X, Xil
W <ij<n), sy a0

X Xl = e X

AN
The constants ¢, Qgicélled the constants of structure of the Lie algebra

with respect to the basc {X,, - - - » Xn}.  These constants cannot be
chosen arbitrasily? In fact, we must have

NS
oy N (X, Xi] + [X, Xi] =0

(@) \:'j{’[Xs, Xil, Xo] + [[Xs, X, X3 + [ X0, X, X = 0
"\

and hence

AN
\m (3% St e =0

(4) Zy(Cimtare + Cantn -+ CrinCriry = 0 (L€, 4, k1< n

If K iz of characteristic =< 2, these conditions are not only neces-
sary but also suflicient to insure that the law of composition defined
by the constants e will have the properties deseribed in Definition 1.
In faet, assume that conditions (3) and (4} are satisfied, and let
X =ZxX, V= ZanXs, Z = Zz:X; be any three clements of g.
We have [X, X] = Zu{ Xy, Xj] = 0 because [X;, X;] +- X; X1=0
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and

X, Y], 21 + Y, 2, X1 + (2, X], Y] = gyl [X e Xil, Xal
+ [[X.f! X.L], X‘l] + [[Xk: Xi']r XJD =0

which proves our assertion.

Moreover, it will obviously he sufficient that the conditions (1)
hold for 7 € 7 and that the conditions (2) hold for ¢ < j < k.

The construction of all Lie algebras of a given dimension over say
the field of real numbers is thus reduced to a purely algebraic problem.
The proof of the fact that to every Lic algebra there corresponds’dn
analytic group is very difficult and must be postponed to the setond
volume. O\

&IV. ANALYTIC SUBGROUPS ~ N

Definition 1. Let G be an analylic group. Ang‘@halytic group

5¢ 4s called an analytic subgroup of § if the followiry conditions are
satisfied: 1) the underlying mawifold of 3¢ s o su matifold of the under-
lying manifold of G; 2) the underlying group of/7is @ subgroup of the
underlying group of G.¥ O

Let 5 be an analytic subgroup of 6> We denote by ¢ the Lie
algebra of G and by ga.the tangent vectinebuce toGata point 058G  Let
b be the sct of elements X2g such thiat X, belongs to the tangent space
be to 3¢ at the neutral clementde. Let o be any element of 3¢; if
&, is the left translation asbociated with o, ®s induces an analytic
isomorphism of the undefTging manifold of 50 with itself, It follows
that d®,(h.) is the tanés:hf::—space e to 3 at o 1f Xsh, we have X €he
for all ¢23C, and therdiore X hasa contraction tothe submani old 3¢, and
this contraction g% left invariant infinitesimal transformation on i,
X and ¥V a)il'e'\':n B, we know that [X, Y] also has a contraction to I;
in particula{’,,,\x;'é nave [X, ¥leb.

Deﬁn.i‘tﬁ)n 9. Let g he a Lic algebra. A subset b of g is called a
subalg@biﬁ of @ if the following conditions are satisfied: 1) b ¢s a vector
s{ﬁkﬁmée of 4: 2) the conditions Xeb, Yeh imply [X, Y1eD. ‘

With this terminology, we see that the set § introduced above is a
subalgebra of the Lie algebra g of G, and that this subalgebra is
isomorphic to the Lie algebra of 3¢ (an isomorphism being obiained by
assigning to every X&b its eontraction to 3y, We may therefore
identify the Iie algebra of 3¢ with a subalgebra of g.

Conversely, let b be any subalgebra of g, To every ¢eG we assign
the subspace §, of g, composed of the elements X, for Xeh We
obtain in this way & distribution <N ont § which is obviously analytie.
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It {X,, - -+, Xa} is a base of 8, the infinitesimal transformations
Xy, -+, X form a base of M around every point of §. Remember-
ing that $ is a subalgebra, we scc immediately that the distribution It
isinvolutive. Let 3¢ be the maximal integral manifold of the distribu-
tion MM containing the neutral element e. If ¢ is any element of 3¢, the
left translation &, is an analytic isomorphism of the underlying mani-
fold of 3¢ with itself. Since dd.h, = b, this analytic isomorphism
leaves the distribution ®% invariant. It follows immediately that
@, permutes among themselves the maximal integral manifolds of M.
If 023C, ®.,-» maps 3¢ on a maximal integral manifold which ‘contains
P,-0 = &, whence -3¢ = 3¢. It follows that the set of Doints of 3¢
is a subgroup X of the underlying group of g, and that, i osH, @,
induccs an analytic isomorphism of 5¢ with itsclf. We-wish to prove
furthermore that the mapping (s, ) — or—! of/0 X 3 onto 3 is
analytic. A\

We know that the mapping (s, 7) — o7~™3\an analytic mapping of
3¢ X3¢ into G (because §C X & is clearly e submanifold of ¢ X G).
Therefore, making use of Proposition 1{§}X, Chapter III, p. 94, we
see that it will be sufficient to pfe¥e’ that the countability axiom
holds in 3¢, Sinee3is a subm&r}i{fdld of g, it will be enough to prove
that the countability axiom Ields in g (Cf. Proposition 2, §IX,
Chap. IT1, p. 94). Let V hieda cubic neighbourhood of the neutral
element e in § with requct‘ti:f some system of coordinates at e.  Sinee
V is homeomorphic toga, tube in some cartesian space, it contains a
countable dense subget' E. Let D be the group generated by the
elements of E; thén D is countable. We shall prove that ¢ is the
union of the sej;s:EV, 8eD); this will clearly prove that the countability
axiom holdii-G. Tet o be any element of G, Since G is connceted,
the elemeritd“of ¥V form a set of gencrators of G, and we may write ¢

in the QU of - - - o with eV, @ = £1 (1 € k k). For each
k wedcan ind a sequence (6y..) of elements of E which converges to e
Betid. = 67, - - - 63*,; then we have lim,_, 5, = 0. Since cV~! is

*21 neighbourhood of ¢, there exists an integer # such that 8,86V,
whence ¢¢3,V. Bince 8,eD, our assertion is proved.
We have therefore proved that 3¢ is an analytic subgroup of G.
The subalgebra of g which is associated with g¢ by the construction
which was indicated at the beginning of this section is obviously b.
Conversely, let 3" be any analytic subgroup of § whose Lie algebra
ish  Then it is clear that 3’ is an integral manifold of the distribution
M and therefore that 3¢’ is an open submanifold of 5. Since 3¢’
contains ¢, it contains & neighbourhood of ¢ with respect to 5. Since
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3¢ i connected, the elements of any neighbourhood of ¢ form a sct of
generators of 3¢, whence 7" =50 We have proved:

Theorem 1. Let § be an analyiic group. If 3 4s an analylic
subgroup of G, the Lic algebra of 3¢ may be considered 63 @ subalgebra
of the Lie algebra of G. Every subalgebra of the Lie algebra of G s the Lie
algebra of one and anly one analytic subgroup of G.

Remark. The maximal integral manifolds of the distribution IR
which was introduced in the course of the proof are clearly the cosets
#i¢ obtained from 3¢ by the left translations in . ~
§V. CLOSED ANALYTIC SUBGROUPS O\

A\

Let € be an analytie group of dimension m, and let 3¢ be an analyvtic
subgroup of g of dimension 7. We assume furthermore, that the st
of points of 3¢ is closed in the underlying space of G. _¥e shall prove
that, under this condition, the underlying space of $0ds a subspace of
the underlying space of G, and therefore that the nnderlying topological
group of X is a topological subgroup of thvx gliderlying topological
group of G.

Since 3¢ and its coscts are the ma;xjmfil integral manifolds of an
involutive distribution on § {(cf. §’I'\f,~:pl ¥07), we ean find a gystem of

coordinates {1, * * * , Tm} ab th@}héﬁtral element ¢ on G and a cubic
neighbourhood V of e with refpect to this system which have the
following property: a being@he breadth of V, il fap, - - 0, & are

any m — n numbers m{ﬁihat |turil < @ (1£j<m—n} the slice
S: of V characterizedbysthe equations Tup; = Ena (1 <jis<m—n)is
contained in some goset modulo K {¢f. Theorem 1, §VII, Chapter II1,
p. 88). The set@RY ™ V consists of at most countably many slices St
beeause the a,;-g:o\ﬁ of countability bolds in 3 (ef. §1X, Chapter 11T,
p. 94). Le\\b;E' be the seb of points (§usr =~ 7 teRm such that
S (30 \ Since 3¢ is closed, ¥ is relatively clgsed in the cube defined
by ,lic;‘;p}J( a(l $j<m—mn) (the @..'s being taken as coordinates
in{R# "), Since X is countable, it has at least one isolated point £%
Let oy be & point of Sp. If Wisa sufficiently small neighbourhood
of ¢ with respect to 3¢, soW 15 a neighbourhood of o with respect to
S Since §° is isolated in =, there exists & neighbourhood V7 of €
in g such that oW — i eV’ It follows immediately that, ¢
being any point of 3¢, the peighbourhoods of ¢ with respeet to 3¢ are
the interscctions with 3¢ of the neighbourhoods of & with respect to G
This proves that 3C is a subspace of G.

At the same time, we sec that every point of = is isolated,
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and therefore that V38 ( S, provided a is small enough, where S,
is the slice which contains e,

Now, let ©; be a closed topological subgroup of § which contzins
I as a relatively open subgroup {which implies that the component of
the neutral element in $; 18 3¢). If @ is small enough, we shall have
Vg, (8¢, and thercfore ¥V H = 8o We assert that there
exists a number a; > 0(e; < @} with the following property: if the
numbers [&.44, (8,0 (1 €7 € m — a) are all £ @, and if the points
{= (£n+1’ Ty Em)! 5, = (E:H—I: T g:n}eﬁ;m—n are diStian}\t'hen
the slices 8, Sp, belong to distinet cosets modulo $;.  Imfavt, the
neighbourhood ¥ having been so chosen that VY 8y = S, let Vo, Vi
be cubic neighbourhoods of e such that VoV, ( V, Vo'W ( Ve we
assert that the hall-breadth a@; of V,; has the sta‘ﬁe}fﬂproperty. In
fact, let o and r be two elements of V', which belongto the same coset
modulo ;. Wehaver eV, M 91 = Ve S.j,i\-‘ hence a7 (Va7 Sy).
But ¥, ™ 8, is eonnceted and r(ng_“‘Sn)\( VsVs ( V; therefore
s and 7 belong to the same component 455, MV, ie. to the same
slice S, which proves our assertion. '

Since $, is a closed subgroup of 8, the homogeneous space G/
has a natural topology (Cf. §ITLXChapter II, p. 20}). We denote by
@ the natural mapping of G cbto G/H:. Let F be the subset of V
defined by the conditions &%

z1 =0, "';im?ﬁn:(}; [xn-l—déal (1$jgm“ﬂ)
Then & maps F m\a\ continuous unhivalent way; sinee F is compact,
this mapping igftopological. Since &(F) contains the image under &
of the cubic Aeighbourhood of breadth ¢ of ¢ &(F) is a neighbourhood
of @(e) in G¥H:.  We have proved
Pr¢ gsition 1. Let 3¢ be a closed analytic subgroup of the analytic
growph 8" Then § is a topological subgroup of §. Let D1 be a closed
t{);{o&}g?joal subgroup of G which contains 3¢ as @ relatively open subgroup.
""f{’h{m there exists a subset F' of G which contains the neutral element e, 8
homeomorplic to a closed cube in a carlesian space and is mapped
topologically onto a neighbourhood of &(e) in G/$1 by the natural mapping
» of G onlo G/Hr.
We shall now define the notion of anelytic functton at a point p of

the space /91 Let f be a function defined on a neighbourhood of p,
-1

and let ¢ be any point of the set & {p). The function fo & = ¢ is
defined on a subsct of ¢ which can be represented as a union of cosets
modulo $1, and we have g(pr) = g(p) if &P Therefore, if g is
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analytic at o, it is also analytic at cvery point of the form or, 7651,

-1

ie. at every point of @ {p). If this is tho case, we shall say that f
is analytic at p on /9. Let G(p) be the elass of funetions analytic
at p. The classes G(p) have obviously the properties I, IT of §L,
Chapter 1[I, p. 68, The set F being constructed as above, denote
by W the set of interior points of o(eF). If =W, we st wi(g) = Eniilp),
where pis the point of F such that &(ep) = ¢ The mapping ¢ — (¥1(@);

o Ymeslg)) maps W topologically onto a cube in R"™%; the func-
tions y; are analytic at every point of W and conversely, every funetion
which is analytic at a point ggW is analytically dependent around\y
on the functions 71, * * * 5 Ymu 1b follows easily that we candefine
o manifold whose underlying space is G/D1 and such that G(p)'is the
class of analytic functions at p on this manifold. 1t is tzhu; manifold
which we shall from now on denote by ¢/91. U lis theyset of points
of F whose coordinates are < o3 in shsolute value“,’?bﬁe contraction
of & to I is an analytic isomorphism of I (considerpd 25 a submanifold
of Q) with an open gqubmanifold of G/H1. A
_ To every peG therc corresponds a home}zﬁbrphism of G/ 1 with

itself which maps a point p = (o) ol yp = Hlps). The mapping
(p, p) — pp is an analylic mapping of GuX (§/91) into g/$1. Infact,
ps = &(os) being any point of g/$ulet &* be the reciprocal mapping
of the contraction of & to aol. ,jThén &* g an analytie mapping of &
neighbourhood of po into § afid we have pp = a(pa*(p)) if pis in this
neighbourhood, which px:tg*c-’és our assertion.

SVINANALYTIC HoOMOMORPHISMS

Definition 1., A homomorphism IT of an analytic group § inio an
analytic group.@ié called an analytic homomorphism tf ¢ i§ an ana;-yi:ic
MmaApping 0&}?3 “underlying manifold of § tnto the underlying manifold
of 1C. &

L,etfH" be an analyiic homomorphism of § nto 3. Let X be any
leftNnvariant infinitesimal transformation on . Denote by ¢ and 7
thafeutral elements of G and 3¢ respectively; then dif X . is a tangent
vector t0 3C at 7. Denote by Y the 1eft jnvariant infinitesimal trans-

formation on % such that ¥, = dH X.. Then we assert that
(1) Vo = dH. X,

for any eeg. Denote by @, ihe left translation in G which maps eone
and by ¥, the left translation in 3¢ which maps 7 on Hs. TFrom the
fact that H js a homomorphism, it follows immediately that H O ®s
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= Ty, @ H. Therefore

diiX, = d(H od,3X, = d(Vu, o H)X, = d¥ g (dH . X.) = d¥g.Y,
= Y.Hrr

which proves our assertion.

The formula (1) means that ¥ is H-related to X (Cf. §V, Chapter
TT1, p. 82). We set ¥ = dH(X). We know that, il X and X’ are
any two left invariant infinitesimal transformations on G, then

dH([X, X)) = [¢H{X), dTT(X")] A
{ N
(cf. Proposition 1, §V, Chapter IIT, p. 82). QO

Definition 2. Lef g and 0§ be Lie algebras over th&Sume field K. 4
mapping A of ¢ tndo § 45 called a homomorphism @j a) it is a lineay
mapping; b) we have ALX, XD = [A(X), AT any X, X'gg.

We see that to cvery analytic homomoerplilsm H of G into 3¢ there
corresponds a homomorphism 477 of the Ligsalgebra g of G into the Lic
algebra b of 32. We shall now ommme\\hether the converse of this
statement holds truc.

Let A be a homomorphism of g, mto B, and let ¢ be the subsct of
g X b composed of all elements. ol the form (X, AX}(Xeq). Sinee A
iz a homomorphism, we sean gasﬂy thut ¢ is a subalgebra of g X 0.
We know that g X b is the Lie algebra of § X 3¢ (Cf. §IT1, p. 104).
Let & be the analytic sdhgroup of § X 3¢ whose Lie algebra is ¢ (The-
orem I, 81V, p. 187§, Let &, be the projection of G >< 3 on g, and
lot @) be the coptraction of @; to & The mapping @] is clearly an
analytic homo\rnorphlqm of & into §. Moreover, if Xeq, d&] maps
(X, (AX),,) G X, which shows that d&] maps the tangent space to &
at (e, 1) mfa univalent way onto g, (the tangent space to § at ¢). It
follo\\f%shat we can find a cubic neighbourhood U7 of (e, %) mth regpect
to &X(telative to bome system of coordinates on £) which is mapped
’mpo‘loglcall} by @) onto a neighbourhood of € in G (el. Proposition 3,

\@I\' Chapter TTI, p. 76). Let X be the reciproecal mapping of the
contraction of @ to U; then X is a loeal homomorphism of ¢ into &.

If the group G s semply conneeled, this local humomorphls,m may bhe
extended to a homomorphism (which we algo denote by A) of G into

& (Theorem 2, §1X, Chapter 11, p. 54). Since A © &) coincides with
the identity on U and since & is connected, A © @] is the identity
mapping and therefore &) is & homeomorphism of & with G. Let @,
be the projection of § X 3C ondC; then IT = & © A is clearly an analytie
homomoerphism of §intod¢. If X is a left invariant infinitesimal trans-
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formation on G, we have d\(X.) = (X, (aX),), da (X, (2X),)
= (AX),, whence dH(X) = AX.

Assuming that there exists an analytic homomorphism H of G into
3¢ such that dH = A (we have scen that this is the case if ¢ is simply
connected), we shall prove that H is uniquely determined. In fact,
let H' be any analytic homomorphism of § into % sueh that d’ = A
The mapping ¢ — 6(c) = (¢, H'o) maps isomorphieally the underlying
group of G onto a subgroup E' of the underlying group of § X 3C.
Furthermore, # is a regular analytic mapping of G into § X 3. We,
can define an analytic group & whose underlying group is E' by, the
condition that § shall be an analytic isomorphism of § with &¢\Ehe
identity mapping of & into § X3¢ may be represented in the form

—1 -
go & and is therefore analytic and regular. We condlude that &
is an analytic subgroup of § X 3. The mapping @3 98 is the identity
mapping of § onto itsclf; the mapping w. 08 coincides with H'. Tt
foliows that, if Xeg, we have da {de(X)) = X,{i{gg(dﬁ(X)) = dH'(X)
= A(X), whence d8(X) = (X, ALXN. T}{é:.shows that the Lie
algebra of & coincides with the Lie algehifa e constructed above and
depends only on A. T herefore the group %45 also uniquely determined
by 4, and the same is true of H., N

We have therefore proved " >

Theorem 2. Let § and 3¢ bes analylic groups, and let g and b be
their Tie algebras. If H is di gnalytic homomorphism of § info 3¢, there
corresponds to H o hom buphism dH of g into b such that, X being any
element of @, the infindigsimal transformation X and dH(X) are H-relaled.
If I and H' are anedytic homomorphisms suck thal dH = dH', then H =
H. If §is s@m@i‘y connected, every homomorphism of g into b can be
represenfed ipthe form AII, where H is an analytic homomorphism of §
into 3. AN

Theutgstriction that G be simply connected cannot be removed.
In“f\a‘ﬁ&’ we have seen that 7' and It have the same Lie algebra r. It
iwléa‘ir shat the identity mapping of T into itself cannot be obtaiyed
from any homomorphism of T* into B, since the only homomorphism
of T into B is the one which maps every element upon 0.

However, the proof has shown that the following resulf holds in
every case: fo every homomorphism A of g into § there corresponds @
local homomorphism H of neighbourhood U of € in G into 3¢ which 1s
analytic ai every potnt oell and which satisfies the condition dH(X.)
= (AX) u, for every Xeg and aell.

To conclude this section, wo observe that a homomorphism I of an
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analytic group § into an analytie group 5¢ is certainly everywhere
analytic if it is analytic at . In fact, we have H(sow) = H{oo)H (o}
and our statement follows from the fact that the left translations in g
and X are analytic isomorphisms of these manifolds with themselves.

§VIL. FACTOR GROUPS OF AN ANALYTIC GROUP

Let G be un analytic group, and let § be a topological subgroup
of G-which salisfies the following conditions: § is closed in~g; the
component of the neutral clement in § is the underlying topdlogical
group of an analytic subgroup 3¢ of § and is relativelyopen in $.
Then we have already defined a structure of manifold’o'xi\gf@. Now,
let us assume furthermore that § is distinguished Then G/$ has a
gtructure of group. We shall prove that the .gi"@up ¢/$ and the
manifold /9, tuken together, form an analytit\group.

The mapping (p, p) — p7'p of § X (GLE) into §/D is analytic
{ef. §V¥, p. 109). Moreover, since § i’s,"&l\s'tinguished, p~p depends
ovly upon the coset ¢ modulo § \vhiellt\ébntains p, and p=lp = g 'p.
Lot & bo the natural mapping of Qanto 6/, We have seen in §V
that, given a point ¢;'¢G/P, therd exists an analytic mapping & into
¢ of a neighbourhood of ¢7' sueh' that &(0*(g™Y)) = ¢! when ¢ 'isin
this neighbcurhood. We have ¢'p = *(¢~')p, which proves that
the mapping (p, ) — gj‘p’ 18 analytic, and therefore that /9 is an
analytic group. 2N

Dencte by & ¢hesgroup /& and by g, b and f the Lie algebras
of §. 3 and & re;s\]'ectively. By Theorem 2, §VI, p. 111 there cor-
responds G w\a‘, Homomorphisin dé of g into . We know that there
exists a sulimanifold I of §, containing the neutral element and such
that thg»@:nﬁ;mc-tion of & to I is an analytic isomorphism of 7 with an
open\,@\bmanifuld of & (ef. §V, p. 109). It follows that every tangent
VE?C’Q-QI‘ to X at fe) is the image under da, of some tangent vector to §

. @be  In other words, we have dafg) = &

\ 3 Let h be the set of clements Xeg such that dofX) =0; h is a
vector subspace of g of dimension < m — (m — n) = n (where =
and n are the dimensions of G and i respectively). On the other
hand, &® maps 3¢ onto é{e). It follows immediately that da(X.) = 0
for any Xeb, whence b ( 1. Since § iz of dimension n, we have
b = 0. From the definition of B; it follows immediately that the
conditions X¢eb, Yeg imply [X, Y]ey.

Definition 1. A wector subspace b of a Lie algebra g is called an
ideal in g +f the conditions Xeb, Yeg imply (X , ¥]zbh,
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Let b be an ideal in the Lie algebra g.  Let ¥¥ and ¥5 be two ele-
ments of the vector space g/9. L ¥y and Y. arc elements of g which
belong to the coscis Yf and Y’; respectively, the element [V, Y4l
belongs to a cosct which depends enly upon YT and ¥;, as follows
from the formula

(V14 Xy, Vs 4 Xul = [V, YVl 4 [V, Xo] — [V, Xo] + [ X5, X0
= [V, V] (mod )

(if X1 and X belong to ). If we denote by [YT, ¥2] the coset which
contains [V, ¥.}, we see immediately that the law of compositio, ™
(Y: Y — (YT, ¥5] defines a structuve of Lie algebra on a/h. Ahé
Lic algebra defined in this way will again be denoted by a/h. 8 )

Returning to the consideration of the group G/§, we observe that,
if Xeg, d2(X) depends only upen the residue class of X rqéf:iﬁlo b, and
therefore that do defines in a natural way a linesr igo‘qﬁofphism § of
a/h onto L. Since da is a homomorphism, 8 is an Jsdmorphism of the
Lie algebra g/b with . W have therefore provedy

Proposition 1. Let G be an analytic gmu;q‘, Zand let © be a closed
distinguished topological subgroup of Q. Ashime that the component
of the neutral element in O is relatively opewin § and is the underlying
topological group of an analytic subgrpz’ejﬁr 3 of g Let g ond ) be the
Lie algebras of G and & respect-ive{y;:é}i‘en b is an ideal in g and the Lie
algebra of G/ 1s isomorphic withna, .

We shall prove later tha AF3C is an analytie subgroup of g (not
necessarily cloged), the Lie(dlgebra of 5 is an ideal in the Lie algebra
of G if and only if 3 i§ digtinguished in G.

§VIII. THE EXPQNENTIAL MAPPING, CANONICAL COORDINATES

Let g be angualytic group, and let g be the Lie algebra of . We
shall considef_the analytic homomorphisms into § of the additive
group £ of real numbers. I we denote by ¢ the coordinate in R, the
Lic algelph t of I is spanned by the infinitesimal transformation L
de ﬁa}dby It = 1. 1If { is an analytic function on E at a point t, we
haved.,f = (df/dd)s

If X is any element of g, there exists a homomorphism of ¢ into ¢
which maps L on X. Since B 1s simply connected, there corresponds
to this homomorphism an analytic homomorphism £ — 8(¢, X} of B
into § (¢f. Theorem 2, §VI, p. 13 1). If fis an analytic function on §
at ihe point oo = 8(ty, X), we have

W Xof = (@%&2)%
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Suppose for instance that § is the group GL(n, €. Let z4(e) he
tho coefficients of a matrix g?(”L(fn C). We may represcnt an element
X of the Lic algebra of G by the matrix (Xxy) = X (ef. §111, p. 104).
The matrix (X,z) is then equal to ¢X for any ¢8GL(n, €). The
cocfficients of the matrig #(2, X) are analytic functions of ¢; if we denote
by d0(¢, X)/dt the matrix whose coefficients are the derivatives of the
coefficients of #(¢, X), Tormula (1) gives

aots, X)

= o, X)X ,
& ¢, X) \

(2)

LS §
On the other hand, we have #(0, X) = ¢ (the unit niatfix). The
solution of the differential equation (2) with theﬁpi‘tial eondition
(0, X} = ¢is SO

o(t, X) = exp %

(Cf, §1I7, Chapter I, p. 5). This leads u&to the following generali-
zation: \
Definition 1. Let X be an arbatmry clement of the Lic algebra
g of an analytic group G. Let L b.o the element of the Lie algebra 1 of the
group R which is defined by Lé =*1 (where t is the coordinate in I).
Let £ — 8(t, X) be the anaﬂygwhbmomorg}k@sm of R inte G whose differ-
ential is the homomorphism™af ¥ into q which maps L upon X. We shall
denote the element 8(1, X) by exp X.

The exponential apping is therefore a mapping of g into §. We
have clearly '

exp (t1 + )X = {exp $,X)(exp {,X)

'\ exp (—iX} = (exp tX)?
Ie‘t\"i\}f +, X.} be a base in . We may cxpress each X

in th\orm X = ZMu(X)X:. We can define a manifold on the set g

b§r the condition that #1, * * *, ty shall form a coordinate system
C x;t't. every point of this manifold. The manifold obtained in this way
is clearly independent of the choice of the base {X,, - - -, X,}.

Now we shall prove that the exponential mapping is an analytic
mapping of the manifold which has just been defined. Let [y, - * *
y.] be a system of coordinates on G at the neutral element g, such
that () = 0 (1 £ 7 € »), and let W be a cubic neighbourhood of e
with respect to this system. Let wy, - + + | u, be any real numbers;
there cxists a number ¢ > 0 such that exp 2MuXEW for |{| <
Let T(w1, - - -, %.) be the least upper bound of the numbers &
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satisfying this condition. If Jf| < T'(u), we set
yilexp {ZwXy) = Fill; w)

(where u stands for the n letters wy, « + -, ua) I ¢cW, we have
(XDow; = Uslysla), © = -, #alo)), where the functions Gy, = 0 0y
y,) arc defined and analytic whenever |y« <a (1 £k € n) (where
a is the breadth of W). It follows from the definition of the exponen-
tial mapping that

dFi' aft T T p

it G w = SwUg(Falt ), - - -, Fall; 1) N
In other words, the equations y: = Fi(¢; u) (1 £i8n) reppeg'e}tt? for
lt| < T(u), a solution of the differential system « M

s . O
(1) Ej = Ei:luibﬂf(?fl: C oY) (1 < .:;Lé-‘\n)

Furthermore, we have F;(0; 1) = 0 (1 £ ¢ £ n%

Now, we apply the existence theorem to/Phe system (1), and we
obtain the following result. There exist pwonumbers b > 0 and ¢ > 0
and 7 functions F; ({; 1), which are defingd and analytic in the domain
defined by the conditions |uxl < b (NS & < n), ji| < e, and which
have the following properties: 1) ff':j({};'u) =0(1<¢€n);2) |F7 (¢ w)
< g:3) the equations g = F : (aﬁf;fu)’ represent, a solution of the system
(1). Making use of the upigueness theorem, we conclude that the
cqualities Fi(f, u) = F:(t;,\n) (1 £i< n) hold provided lug) < b
1€k € w, |t < minNe T It follows immediately from the
definition of 7'(n) that

:‘[ﬁl:b-[xmﬂu}(maxlséﬂn]Fi(t; wh) =a
Making use, Qf:.}:u}opeﬁy 2) of the functions F}, we sce that T{u) Zc
provided\«%f’ <b (1 £k<n) Onthe other hand, we clearly have
R N Fift; ) = Fe(dt; w)
owided 1t < (A[FT(w). It follows easily that the funetions Fi(1; u)
are’defined and analytic provided |us| < be (1 £ k € n). This shows
that the cxponcential mapping is analytic at the origin of g.

If X is any element of g, there exisis an integer M > ( such that

M-1X ig contained in some open neighbourhood of 0 on which the

exponential mapping is analytic. Since
exp Y = (exp M)

we see that the exponential mapping is analytie at X.
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Now we shall see that the exponential mapping is regular at the
origin of g (notc that it is not truc in general that the exponential
mapping is everywhere regular).  In fact, let X be the tangent veetor
to g at the origin which is defined by the conditions Xy = 85 (1 <4
< n). Tt is clear that the differential of the exponential mapping
maps X;upon (X;).. Since the vectors (X;). form a base of the tangent
space to G at e our assertion is proved. It follows immediately

that there cxistg a coovdinate system {zy, - - -, Za} at e on § such
that the equalities zilexp TwupXs) = w (1 € ¢ < n) hold I)I{)Vid{:d
lagl, -« +, |u,) are sufficiently small,

Definition 2. Lel {Xy, - - -, X,} be a base of the(Die algebra

of an anelytic group G. A system of coordinates {xy, Y, .} al the
neutral element ¢ of G 45 called a canonical system qﬁ.};oérdz’nates {with
respect o the base (X, - -+, X,}) if the equalitigasf:ﬁ.-(_ei(p ZTauXy) = w
(r €4 € n) hold whenever |ud, « « + | |ual gre~sufficiently sinall. Let
a be a wumber such that our equalities hold whehewsr |wi| < a (1 £ 4 € n).
A cubic neighbourhood of breadth < o with/respect to the ecoordinales
Ty, * ¢, Ta 28 called @ ecanonical neighbelerhood of e.

§IX. FIRST APPLICATIONS OF )CANONICAL COORDINATES

Proposition 1. Let & be an;&ﬁa-lytic homomorphism of an analytic
group § into an analytic gmyph(l‘. If X is any element of the Lic algebra
af G, we have
&‘(exp X) = exp (da(X)).

In fact, let Lche\the infinitesimal transformation of the additive
group I which is.éé ined by dit - L = 1 {(where £ is the coordinate in £),
and let & be the/mapping { — exp tX. We have do(L) = X, whence
d(@ o O){L)5da(X). If 87 is the mapping ¢t — exp ¢ - da(X) of R
into SC,'“{vg\ﬁa,vc also do'(L) = do(X); it follows that ¢ = & © §, which
proveégpi'oposit;ion 1.

Cotollary 1. If ihe mapping & of Proposition 1 is univalent, 1t s

alsd everywhere regular.

a\"
\
\ 3

In fact, assume that d&(X) = 0 for some X in the Lie algebra
of . We have &{oxp tX) = @&(e) for every #2R; since @ is univalent,
we have exptX =¢ X = 0, which proves that d& is a univalent
mapping. Corollary 1 follows immediately.

Corollary 2. FLet 3 be an analytic sub-group of G, and let ) be the
Lie algebra of 3. If U is a neighbourhood of 0 in b, the elements exp X,
for XelU, form a neighbourhood of the neutral clement in 3.

This follows immediately from Proposition 1, applied to the
identity mapping of & into .G,
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Corollary 8. The notation being as in Proposition 1, let us assume that
g and § are the Lic algebras of § and 3 respectively.  Then & maps § onio
the analytic subgroup of 3 whose Lie algebra is the tmage of g under do.

Sinee da is & homomorphism of g into b, da{y) is clearly a subalgebra
i of h. Let 3 be the corresponding analytic subgroup of 3. The
elements of the form exp X, Xgg, form a system of generators of G.
It follows thaf the elements @lexp X) = exp da(X) form a systern of
generators of @(g). DBut these elemcnts also form a system of gen-
erators of 3 by Corollary 2.

Corollary 4. The nofation being as in Proposition 1, let n be Lte
kernel of the homomorphism da, and et T be the analytic subgroyp.of G
whose Lie algebra is 1. The group 3 -is the component of thd\teutral
clement in the kernel Wy of & and is relatively open in M. o S

If Xen, we have (by P'roposition 1), afexp X) :;;é(’p’tfa;(X) =y
(the neutral element of ). Thercfore, 1t followswf:{mh Carollary 2
that M M. Let B be a neighbourhood of the\zero element in b
which is mapped topologically nnder the (:Xpm}egtial mapping of f into
32; let A be a neighbourhood of the zero elenfent in g such that da(A)
( B (da, being a linear mapping, iENclearly eontinuous)., If an
element XeAd is such that a(exp X{2 exp do(X) = u, we have
da(X) = 0 whence Xen, exp Xsﬁt-;.’inet ¥ be the image of A under
the cxponential mapping of into@y® ThenVisa neighbourhood of the
neutral element in G and we haga BV (9 Lt follows that the
underlying group of 9 is I tatively open in M. This group is thoere-
fore also relatively clgsed ' . Since 9N, is clearly closed in G, the
set of points of 9 is cloged and 9 is a subspace of g. Corollary 4 is
thoreby proved.

In §III, we hive defined the set M, (C) of all complex matrices
of degree n ag/@lie algebra. 'The set 37 of the real mafrices of degree
n s r:learl\\:a subsalgebra of M.(C); the same holds for the set M of
mat-ricqst’)?‘tmce 0, because, it X and ¥ are any two matrices in L€,
we haye Sp((X, Y1) = Sp¥X — SpXY = 0 according to 2 well-known

foperty of traces, The set 3% of skew-hormitian matrices is also a
%)-algebra.. In fact, assume that X 4tXx=0 ¥Y+¢¥Y =0 and
set Z = YX — XV: e have

g = (Y X) — {XY) = XY —TX = X -7X=-2

Proposition 2. Each of the groups SL{n, €}, U(n), SU(n), SL(n, R),
SO(n) is the underlying topological group of an analytic sub-group of
GL(n, C).

We write down the proof for SO (n) only, since the other groups may
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be treated similarly. The set M® ™ M ™ M*is a sub-algebra of gl(n,
C). Let 4 be the corresponding sub-group. By Proposition 4, §I1,
Chapter I, p. 5, together with Corollary 2 above, we see that there is a
set. W which is a neighbourhood of the ncutral element in both 3¢ and
SO{n}. Bince 3¢ and SO(n) are both conneeted, W is a set of gen-
erators for cither one of these groups, which proves that 3 and SO(n)
have the same elements. In particular, the set of points of 3¢ is
closed in (fL{n, C), and therefore XK is a sub-spuce of GL(n, C') (ef.
§V, p. 109}, which proves Proposition 2.

From now on, the notations SL(n, C), U{n}, SU(n), SL(ﬂ 1,
SO(n) will refer to the analytic groups which have been\mhned in
Proposition 2, QO

It can be proved in the same way that Sp(n), i:s}the underlying
topological group of an analytie group; the same &rgumont could be
applied to Sp(n, ) if we knew that the labter”g\oup wasd connected,
which we shall prove later,

¥

m\J
§X. CANONICAL COORDINATES OF PRQDECTS AND COMMUTATORS

Let ¢ be an analytic group. Wovselect a canonical system of
coordinates {xy, x5, * + + , @} 8t the neutral clements e of §. Let V
he & cubic nmghbourhood of & ’Wlth respect to this system (whose
breadth we denote by a), and let V1 be a cubic neighbourhood of €, of
breadth a,, such that V,¥,™¢ V.

If o, 7&Vy, we have {8

#or) =GH), L @), < ),

where the functidns fi(ys, 72, -+« « | yu; 21, © v ¢, #.) are analylie in
the domain deﬁncd by gl < ey, |2} < a1 They can be expanded
in power- seueb Y, Yy 0, Yay 21, 2, v s %» and those power
series \"\zérgc for (s < as, |z < as (“here a: < ay). We write

f‘ = 2 uUPiI(yl} y?, e 'yr\‘; zl: zﬂ, Ty zﬁ)

" wheie Py is a polynomial of degree Iin 2z, 2o, + - - » % Wwhose coef-
Heients are analytic functions of i, g, * + -, ¥.. We have 7 =
exp Zx:{r) Xy; we set 7{u) = exp Suay (73X, and we have
(1) aler(w)) = ZpPolas(a), - - - ,rcn(cr);rcz(f), Ly Za(Thed

provided |z:{o}| < ay, |24r)| < @, |u| <
On the other hand, if f is any functmn which is analytic on V3, we
have

H(er(;
ﬂd_f"’)l = (22N X)forw.
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Let us set 7 = Sx(r)X.. By applying our formula to the functions
77, 7, - -, we get
df(or(u))

du-f = (T{f)n"r[u);

and therefore the Taylor expansion at u = 0 of flev(u}), considered
a3 a funection of «, is

! n
flor(u)) = o) + 27 5 (T Q
.\:\’
If f =2 and faido)| < as, Jws{r)| < as, the formulas (1} skO that
this serics in u converges for |ul = 1, and that A\

P‘-E(xl(d)? T :xﬂ(g}; xl('r): T In(f)) ;ééffxi)w-

Now we set § = Zz:(o) X, o(f) = exp 1S ’:I.ngin an analytic fune-
tion at ¢, the Taylor expansion in ¢ of g(g(i‘))\‘is"

(o) = 900 + B3, (S0

Applying this formula to the funf(%ﬁ(ms (Tr:)s, we finally get

2) x@é b33 k% (ST
and these formulas Hold for |zde)] < @y, || < az (S? and 7T stand
for the identity operators: 8% = T = 1.

The (111ant¢ijh§'~"(8k"1"1:c.:)é is a polynomial of degree k -+ 1 in the
quantities 2y(g), - -+ ,@alo), :alr), + - , Z.{r); therefore the formulas
(2) give i;}x{é\ Taylor expansions of the functions z:{sr).

LC]\ftﬁ’, ) be any function analytic at (e, ) on § X G. If the Taylor
e p&ﬁsﬁm of f(s, 7} by means of xde), - 0 mlo); ol Za(r)
hedifis with terms of total degree b in these 2n variables, we shall say
that f is of order k at (¢, €).

. 1
If we observe that aile) = x:le) + E?k—, (Shz,, mlr) = xile)

+ 2?% (T')e, the formulas (2} give
) wlor) = 7o) + () + (ST). + Bislo, 7,

where Ry is of order 2 3.



122 ANALYTIC GROUDPS. LIE GROUPS [Cuar. IV

The difference z:(o7) — mi(e) — zi{) is of order 2 at (e, €); more-
ower it vanishes if either 7 or 7 coincides with e
It follows that

€y 2oty — rio) — 2:ls) = Zpazi(e)2p(T) Asilo, 7)

where Ay is analytic at {e, €.
Replacing ¢ by o1 and 7 by +7! ¢ v, we have
zilre) — mlor) = i io~le) = Zpasleres(rle o) Ayplor, 70 o).
Since zp{r—le-lre) vanishes when either 7 or o coincides withegdbunust
be of order 2 at least, which shows that the difference a"q_('ra)\—— xilor)
— 27 e v} is of order 3 at least. On the other haagd‘ ave have,
by (3)
zi{ro) — mlor) = (8, Thede + Rislo, 7) - 4‘31;(7 7).

whenee v \

(5) x‘-(T_‘O'_l‘.I'O') = [[S: Tlxi)e 't H?.‘&(Jr T)
A

where R3; is of order 3 at least. P\

We have r{r v 1o} = 670 hem:e" by (4), we get
x“O' TC") = 2‘,‘;( ) ‘*I’ Hb T x) + RM(U T)

where Rs; iz of order 3 at le%t Changing ¢ in ¢!, and chserving
that [T, 8] = —[&, 7, we ;.,et

(6) zilora— 1)"‘ zilr) + ({7, Slu). + RBaile, 1),
with B of ovder S\t- least.

"\§XI. THE ADJ'OINT REPRESENTATION

Lk ¢ 1be un analytic group, and let g be the Tie algebra of G.

By ar&mah rtic endomorphism of § we understand an analytie homo-

morphism of § into itself. If an analytic endomorphism*is also an

a"\alytic isomorphism of the manifold of ¢ with itself, we say that it is

\ an analytic aufomorphism of §. It is clear that tho analytic auto-
morphisms of G form a group 4.

Let « be any clement of 4. Then de iz a homomorphism of g
-1
with itself. Morcover the formuls @ © @ = ¢ (the identity mapping)
-1

shows that d( a ) is the reciprocal mapping of de. It follows that de
is an automorphism of g, 1.e. it is a linear mapping of g onto itself
such that da((X, Y]} = [de(X), da(Y)] for X, ¥Y23. The mapping
o — da is obviously a linear representation of A. This representation
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is faithful; in fact, assume that de(X) = X for all Xeg; by Proposition
1, §IX, p. 118 we have alexp X) = exp X: o leaves invariant the
elements of a neighbourhood V of the ncutral element in . 3inee § is
connected, it is generated by the elements of V, and « leaves invariant
every element of §, which proves our assertion.

Let now ¢ be any element of §; we denote by a. the mapping
r — ero~! of G into itself. Clearly o.€4, and the mapping o — a is &
homomorphism of G into A.

Definition 1. The mapping o — da, is called the adjoint representa-\
tion of G.

Proposition 1. The adjoint representation of G is an aralytic
homomorphism of § into GL(n, C). N ©

Let {Xy, X3, - - -, Xa} be a base of g and let {zy, - ;.:}‘,sicﬂ} be a
canonical system of coordinates relative o this base. If\ ’

(X = 50X 2O

the matrix which represents ¢ in the adjoint rgprelentation is (aiifa)),
If + = exp tX; we have ere™' = exp =7 tak(0) X; by Proposition 1.
§1X, p. 118. Therefore the quantitigs Nd;(e) are the canonical
coordinates of ore—1 (if £ is small enough).. By formula (8), §X, p. 120,
we know that these coordinates are analytic functions of ¢ &t ¢, which
proves that the adjoint represengation is analytic at ¢, and therefore
also cverywhere (cf. remark af the end of §VI, p. 111).
Let A be the adjoint reprefentation. Then d4 is a homomorphism
of g into gl{n, C). Le A(be any element of ¢; 44(X) is a matrix X*
and the matrix A (cxpil Y is exp tX*. Therefore
A .”1: 1 A(e&)_éX_) ﬂ._E
0\ » = hmg .o — i ’
"N

where B js%é unit matrix. By formula {(6), §X, p. 120, we have
BV (Uexp X0))(XD = X+ X X1+ ()

2"\
‘V'f@}‘e"{p(t) remains bounded when {— 0. Therefore X*, considered
as a linear endemorphism of g, maps any element ¥ = Za;X;on {Y, X].

Now let g be any Lie algebra over & field E. If n is any integer,
the matrices of degree n with cocfficlents in K form a Lie algebra
gl(n, K), in which the bracket operation is [X, Y] =¥X — X¥.

Definition 2. If g is a Lie algebra over the field K, we call a homo-
morphism of g into al(n, K) a representation of o (in K, of degree n).

Let X be any element of g, and let P(X) be the mapping ¥ — [¥, X]
of g into itself. If we select a base in g, P(X) may be represented as a



124 ANALYTIC GROUPH. LIE GROUPS [Cuar. IV

matrix of degree n = dim g. The mapping X - P(X) is clearly
linear; moreover

[Y, 1%, Xofl = —[Xy [X, f’}] — [Xy, [V, Xi]] = PX)PXY)
— P(X)P(Xa))Y,

whence P([X1, X)) = [P(X)), P(X1)] which proves that P is a represen-
tation.

Definition 3. 7he mapping which assigns lo every Xeg the linear
endomorphism P(X) of g defined by P(X)Y = [V, X] for all Feg is
called the adioint representation of g.

Retummg now to the case where g is the Lie algebra of\a?n analvti(,
group G, We see that the mapping denoted above by d4 ¢’ the adjoint
representatmn of g. N

Tet 3¢ be any analytic sub-group of G, and le I)\be its Lie algebra.
Ti is clear that 3¢~ is also an analvtu subdgioup of § whose Lie
algebra is the image of § under the mapping\dec. Thercfore & neces-
sary and sufficient condition for 3 to be distinguished is that be
transformed into itself by every opgréhion da,, ¢€G. This condition
may be put in another form, Assu,me that it is satisfied: then, if
Xzgh, we have (A{exp tY))(X)eh fow every {, whence

* Alexp tY) - E
£

and 0 is an ideal in g \Conversely, assume that B is an ideal in g; let
¥ be any element )f\g and let ¥* be the matrix which represents ¥
in the adjoint ropresentation of g We have Y*(h) ( B;if ¢ = exp ¥,
we have daa €7¢Xp Y*, whence da,(f) (). Dut the clements ¢ for
which da,(.fi) C b obviously form a sub-group of G; this subgroup
(onta1{” allV the clements exp ¥, YEQ, i.e. it contains a neu,hbourhood
of thg'umitral element in §. Since G is connected, our subgroup is the
whale ol G, which proves that 3¢ is a distinguished sub-group.
m~fWe have therefore proved the following result, which was an-
N hounced in §VII, p. 114:

Proposition 2. If 3¢ ¢s an analytic sub-group of the analyiic group
¢, o necessary and sufficient condition for 1 o be distinguished is that
s Lie algebra be an ideal in the Lie algebra of G.

The kernel of the adjoint representation of the group G is clearly
the center of §. The kernel of the adjoint representation of the Lie
algebra g (i.e. the set of elements Xeg which are mapped on O under
the adjoint tepresentation) is the set of elements Xeg such that
[X, ¥] = 0 for every Yeg.

[X, ¥] = hm,_.o Xeh
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Definition 4. If g is a Lie algebra, the center of g is the sel of the
elements Xeq for which [X, Y] = 0 holds for every Yeg.

The center of a Lie algebra is clearly an ideal.

The following result is an immediate consequence of Corollary 4
to Proposition 1, §IX, p. 118:

Proposition 3. Lel §, be-the center of an analylic group 4, and let €
he the connected component tn €y of the neudral element. Then S is
the underlying group of a closed analytic sub-group of G whose Lie
algebra is the center of the Lie algebra of . )

Now let g be any Lie algebra over the field &, and let ug denote byt
P the adjoint representation of g. Then Plg) iy a sub-algebra \of
al(n, €), and therefore there exigts an analytic sub-group of GEin, €)
whose Lie algebra is' P(g) (cf. Theorem 1, §IV p. 107). Op,@h\é other
hund, P(g) is isomorphic to g/¢, where ¢is the center of gs. Therefore
we have the following result: .~&*

Proposition 4. If g is « Lie algebra over the fieldNgy there exists an
analytic group whose Lie algebra 18 'isomorphic:u{&w /¢ where ¢ is the
center of g. ~

Tt follows in particular that if the center ‘of a Lie algebra g con-
tains only the zero clement, there existy ant analytic group whose Lie
algebra is isomorphic to g. The result remnains true for any Lie
algebra, but is considerably more ,difﬁéult to prove,

SXII. THE DERIVED GROVP

Let g be a Lic algebia (S{g' g ficld K. The vector-space gpanned
by the clements of the for\n\ [X, Y], with Xep, Yegls obviously an ideal
in g.
Definition 1. (Nie ideal spanned in a Lie algebra ¢ by the elements
of the form [X',\f}," (Xeg, Yeq) is called the derived algebra of . Iiis
generally de M@d by a'.

A Lie aigg:-m s said to be abelian if the element [X, Y]is equal to 0
for any{[véb elements X, ¥ of the Tic algebra. The derived algebra
of £y Tie algebra g is characterized by the following properties:

Proposition 1, If g s the derived algebra of g, the factor algebra
/9’ is abelian, Conversely, if §is any ideal such that /b is abelian, §
contains the derived algebra. o .

In faet, let X, ¥ be two clements of g and let X, Y be theu’. aosets
modulo B, The condition « X, 71 = 0 for all X, ¥Y7is equ}v.ajent
to the condition “[X, Y]eb for all X, ¥, and this proves propasition 1

Now let € be an analytic group, and let g be its Lie algebra. To

the derived algebra g’ of g there corresponds an analytic sub-group
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¢ of G, which is called the derived group of §. It is always a dis-
tinguished sub-group, but not necessarily clozed.

Let a be the factor algebra g/g’. If d is the dimension of &, 015 the
Lie algebra of the additive group R?. There exists a natural homo-
morphism & of g onto a, which maps any element X onto its cosct
&(X) modulo ¢. There exists a neighbourhood U of the neutral cle-
ment ¢ in § and a continuous mapping ¢ of U into £¢ such that

elor) = ¢lo) 4+ ol(7) if 7, =, orell '
elexp X) = exp &(X) if X is sufficiently near >

Therefore ¢(ero=1r~1) = 0 if o, v are sufficiently near e. {\But ore=r!
can be written, for o, v sufficiently small, in the fotm ‘exp X{o, 7),
where X (o, 7) tends to zero when o, v tend to e.  $imge e(exp X{s, 7))
is the neutral clement of R?, we have a(X(o, 2Y¥= 0, X (s, 7)&g" and
sro~ 128" when ¢, r belong to a sufﬁciently.‘é%ﬁtall neighbourhood 'y
of ein G. Since G is connected, the elementsof Uy constitute a set of
generators of G, and it follows easilty t};w;m\g’ contains the commutator
group § of g, i.e. the group generated\by all the commutators ore™'7"
for o, 7€G.

We ghall prove that, convgrsély", every element of §” belongs to €.
Since § is connected, it is sulidient to prove it for the elements of a
neighbourhood of € in ¢/, 4 '

We can find a finite number of pairs (Y, Z1), + + +, (Vy, Z5)
of elements in g suCh' that the elements U = [¥, Zd -, U
= [¥,, Z.] form, a\{)ase of o'. Let Uy, -+ -, U/x be n — r elements
such that {U' Uz - - -, Us) is a base of . We select & canonical
system of codrdinates, say {ui, us - - -, u.}, with respeet to this
base. Lebt ¥ be a cubic neighbourhood of ¢ with respect to this system.

Worget oi(s) = exp sV 7ilt) = exp tZ;; (1 £ 4 < 7) and pils, 8
= f{!@"ﬁi(z)d“_l(s)fﬁ—l(t)- The functions wui(si(s, &)} are analytic at
st =0 Wewrite
N
-/ udps(s, 1)) = tau(s) + thuls) + - - -
where the functions a;(s), by{s), + - - are analytic at s = 0, More-
0};’61‘, since U; = {Yy, ZJ, it follows from formula (5), §X, page 120,
that

lim,o a,v,-is) = — by

Therefore we can find a value s; = 0 of s such that exp sXeV
for |s| = |81 and that # 0,
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We set pi(t) = pi(sy, ) (1 £ ¢ £ 7), and

Pty tey » 0 0 ) = pulf)pe(ls) - - - pult).
Then we have
(au.-(n(tn e 3r))) — afsd)
af} o — gl
and walp(ty, &s, -+ +, &) = 0 {8y - - -, |, are sufficlently smali,
(1 £h £n —71). Thesecond formula is true because p(fy, £ * *

1) belongs to the commutator group, and hence also to §'.

Since |a‘-;(s)| = 0 the theorem on implicit functions shows:jf}hat
every element o0&V such that wi(e) = « - = (o) = 0hay be
written in the form p(ty, &, + + * , &) provided |uio)l, &N, [u{a)|
are sufficiently small. But these conditions all hold for the elements o
of a suitable neighbourhood of ¢ in §'.  Since p(ty fz?}'\' L 1) always
belongs to the commutator group of G, our asgertibn s proved.

Remark, If the group § is simply connedted, there corresponds
to the projection & of g onto ¢/q9" a continqoﬁs‘homomorphism Hof g
into B%. The kernel of this homomorphism‘is 2 closed sub-group of §
whose Lie algebra is g’. The connegt;ed component of € in this group
coincides with @'; on the other hand, this component is obvionsly a
closed sub-group. Ilence: If §%$ a simply connected analyiic group,
the commutator group of G is,€ closed sub-group.

The assumption that'gq\s simply connected cannot be removed in
this statement, as can héshown by cxamples.

Exactly by thefsame method as was applied to §’, it can be
proved thal if Qg simply connected analytic groups, and if I 2s an
tdeal in the L{@\:al:qebm g of G, the analylic sub-group of G whose Lie
algebra is hag mlways closed, provided there exists an analytic group whose
Lie algebrd™is isomorphic to a/9).

§XHI. TOPOLOGICAL INVARIANCE OF THE LIE ALGEBRA
\Wé shall prove in this section that two analytic groups which
have the same underlying topological group coincide also as analytie
groups and, in particular, have the same Lie algebra.

Let G be an analytic group; we sclect a canonical system of coordi-
nates (@, @5, * - - , T.) at the neutral element of G, and we take a
cubic neighbourhood ¥ of e with respect to this system. Let a1 be the

breadth of V.
Lemma 1. Let a be a number such that 0 < a < a,andVbethe sel

of points oeV, such that lz(o)| < e (1 £ ¢ € n). Ifan element eV,
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is such that |ze)) S ar— a (1 i & n) and that 5, ¢, -+ -, ¢* all
belong lo V, we have |2:(0)] <E and z(eD) = o) (1 £1< 0 0<1

£ k).

Lot us set X = Zaie) Xy, where {X,, - - -, X,} is the base of the
Lie algebra g of G corresponding to the system of coordinates {a,

-, z,}. We know that cxp tXeV, for all values of ¢ such that
Hr{o)| < a; (1 €4 € w). We may assume ¢ # ¢; we then define a
number # by the equality t, - max (jz:{e))) = @1 We wanplto prove
that #o > k. There exists an integer k such that A < ty S:\h % 1, and
we have of = exp hXeVy, #{o") = k(o) (1 £ 45 &) f ¢ is an
index such that fo|zde)| = a1, we have h|z(o)] 2 oy — |=(o)| 2
and therefore o does not belong to ¥, from whieh 4f" follows that & >
B >k Ilence, for 1 £ 1<k, we have x,(cr‘) \—\x,(exp IXY) = Ingle);
if we set I = &k we obtain |x:(¢)] <%

Remark. The equality x:(e") = l{£\) obkusly holds also for
-ELIl<k

Now let © be a continuous humomurphls:m into § of the additive
group K of real numbers. T h.g. thtation being ag in Lemma 1, we can
find an interval ] —¢y, 2] (with¥, > 0) such that ©(f)eV if ¢ belongs to
this interval. We set fy(8 52 2,(0) (—# < § < #1);if % is & sufficiently
large integer, we havedfik—18) < a; — @ (1 €4 £ n). On the other
hand, since O i & baom morphism, we have 0(f} = (6(k~'1))*, whence

£ = kf ( )
Ie Q:—k)¥— i (E) = é f{ for k sufficiently large and [I| £ &

A
Smce the functions fi(f) are confinuous, it follows immediately that
" ﬁ(z’t) = {'fi(t) (for [¢| € 1). Tet &z be any fixed number 3 0 in the
Y interval |—#;, #[. We have 8() = exp #;'X, where X = 2f(1)X;
and this formula holds for ¥ £ ||, Since the mappings t — O(f),
t —exp #t;'X are both homomorphisms, the formula holds for all
values of {, which proves that 0 is analytie.
Proposition 1. Every continuous Lomomorphism I of an analytic
group § inio an analylic group 3¢ is an analytic homomorphism.
Let { Xy, + - -, X.} be abase of the Lie algebra g of 6. The map-
ping t — H{exp tX,) is a continuous homomorphism of R into IC;
hence there exists for each ¢ an element ¥; of the Lie algebra of 3C such
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that H{exp {X;) = exp t¥;, We have

(1) H{{exp tiX){exp t2X0) + + - (exp £.X,)) = (exp LY D(exp 1Y)
-+ {exp t. ¥ .).

Let x1, @y, * + *, T» be the canonical coordinates on § corresponding
to the base { Xy, Xo, - - -, Xobofg T4, - - -, [t are sufficiently
small, the element (exp X 1){exp £2X5) - + « (exp £.X.) will be in a
eanonical neighbourhood of the neulral clement and its coordinates
eilt, -, L), o, ety v+, £e) will be analytic functions of N

ty, ¢yt 14, = 3¢, we have ¢; = &;t, whence (6—"3‘) m\:&,,-.
2l; Duee NN

Di()ffl:, ('::: — : f)“) }ﬂi ‘eqiial to 1
foréy =&, = + - =+ =0, Itiollowsthat there iy a.t}oel"ghbourhood _
V of the neutral element such that every ¢V maw ke written in the
form (exp £,X3)(exp LX) -+« {exp 4,X,), where\the numbers £, £,
- -+, t, depend analytically on o. Formulga,"\(xl:) shows at once that
the mapping ¢ — H(¢) is analytic at the héuiral element, and there-
fore everywhere, R

The announced result now f olit_m-'s'i'mfﬁediatcly:

Theorem 3. If {wo analylic gm&*}ﬁ G, O have the same underlying
topological group, they coincide. N

In fact, all we have to do i&\db apply Proposition 1 fo the identity
muppings of G into G’ and €0 § into G: these mappings are analytic,
and therefore they are {n\mt\ally reciprocal analylic isomorphisms.

Definition 1. A Idedlly connected topological group & is said io be
a Lie group if the edwhected component of the neutral element in & is
the underlying tg@b&ég-ﬁcai group of an analytic group Gi.

If such ié\bhe case, we know by Theorem 3 that G is uniquely
(leterminegi.‘\lt-s Lie algebra is also called the Lie algebra of ®.

A Lie\’gi"bup is alwaya locally cartesian (i.e. there exists a neighbour-
hood “df*he neutral element which is homeomorphic to £, Tt has
been ¥onjectured by Hilbert that, conversely, every locally cartesian
group is a Lie group. This conjecture has heen proved to be true
under some restrictive conditions; for instance we know that it is true
for compact groups and slso for abelian groups. Although it seems
almost certain that it is truc in general, the proof will probably require
a set of completely new methods of approach.

Every discrete group is of course a Lie group (of dimension 0).
The linear groups which were diseussed in Chapter I are all Lie groups.

Therefore the functional determinant
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The center of a Lie group is a Lie group. The product of a finite
number of Lic groups is a Lie group. In the next section, we shall
prove that every closed topological subgroup of a Lie group is a Tie
group.

§XIV. A CRITERION FOR LIE GROUPS

Proposition 1. Let & be a locally compact topological group which
admils @ continuous untvalent homomorphism Il into a Lie group .
Then ©& ifself is a Lie group. )

Let § be the sct of all continuous homomorphisms of tife additive
group R into ®. To every Ogf there corresponds an clement Y = Y(0)
in the Lie algebra  of $ such that R\

s W

H(O) = expt¥  (eR) )

A
The elements Y(6) corresponding to tﬁe\ varions elements Geg
form a sub-set B; of §. We denote hy\r the maximal number of
linearly independent clements which/an be found in b (r may be

zero). We construct a base {Yl,JI},}, « v, Y.l of § whose r first
elements Yy, ¥z, -+ -+, ¥, beloigto b There corresponds to this
base & canonical system of coofdiviates {y1, ¥, * * * , ¥a) ab the neulral

element n of . Let V1 bel 5 cubie neighbourhood of n with respect to
this system, N\

Since H is contiitious, there exists a compact neighbourhood U7
of the neutral elggne\lt e in & such that JI(U) ( V.. Tet B be the
boundary of the'set U; B is a compact set and docs not contain e
Since H is ghivalent, H(B) does not contain 7. Therefore, there
exists a nu@iber a > 0 (smaller than the breadth of V1) such that the
inequa,li‘t;\z ‘ax; |y:(Ho)| > a holds at every point seB. T.et V be the
cul&ii’:}aeighbourhooci of breadth a of ».

IF 7 is any element of Vy, we set d(r) = (S%2(r))

i

,':;" Lemma 1, Suppose thal a sequence of elements o = ¢ tn L7 con-

?}i(Hik_)
d{How)
converges to a limit u; when k— 0. Then ¥ = Zu;V; belongs 10 1,
and, tf © ts the corresponding element of §, we have (DU for jtl < a.
For every k, there exists a largest integer I, which has the following
two properties: (1) Ld(Hep} < a; (2) for any integer m such that
0 € m £ I, wehaveofel/. Let ¢’ be any cluster point of the sequence
(6¥); since Ld({le:) < a, we have Ly(Ha)| < a (1 < ¢ € «) whence
(Hap)* = H(o})eV; moreover, yi(He') is a cluster point of the pumer-

verges towards e in such a way thof each one of the sequences
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ical sequence (Lyi(Iloy)), which shows that u(fTe’}] € a (1 £ 7 € n).
In particular, no cluster point of the sequence (o) ean belong to B.

Yor cvery k, cither we have (I + 1)d(Hoi} > a or o does not
belong to U, Let K be the set of integers for which the second cvent-
uality occurs. If K were infinite, the elements ¢7, for keX, would form
an infinite sequence which would have a cluster pomtcr &’ {(because Lis
compact). But, since eit" = ¢¥oy, lim o = ¢, o/ would also be a cluster
point of a sequence of elements helonging to the complement of &/
Hence, ¢ would belong to B, which is impossible. Therefore, if %
is sufficiently large, we have l;.d(Hw) < a S (I + 1Yd(Ha), whence\
lim Ld(Hey) = a.

Let ¢ be any number Such that 0 € ¢ < ¢. Foreachk, let mk\be ‘the
largest intcgm such that mz < @ %l Then my < I, whence s How;
<a (1 £4¢<n and ofel. It follows that (Hex)™e¥ and that
yo(Ho™) = muyfHes) (1 €4 € n). We have lLml wme/l. = la7),
lim Gd{I{ls.) = a, whenee \/

Lim mgi(He) = ;. (1 = i250)

=9
which ghows that X x\

(1) lim H{al*) = exp E{u,;if; = exp tY.

On the other hand, since U is .gf)iﬁpact., the mapping H, which is
continuous and univalent, mapsi¥/ homeomorphically. Hence we
may conclude from (1) thatdhe sequence of* has a limit ¢(f) in U
and that o)

@ \H(a(t)) p—

Replacing the sequ&nce ox by o7 oz '€l if k is sufficiently large), we
see that thf,rc a‘lso exists an element o{—t)el/ such that II{c(—1))
= exp {(—1

Tge( eleiﬁvent o(£) is now defined for [f] < @, and the equality (2)
holds for “these values. 1t follows 1mmedlately from this equality
thafr“\thc conditions il < @, |t < @, tt + f2] < @ imply o(ts + &) =
o(ﬁw(z ). Moreover, o(l} is & continuous function of 1.

Since R iz simply connected, therc exists a continuous homo-
morphism 8 of R into ® such that 6{t) = «({) for |¢] sufficiently small.
The corresponding element Y (0)eh is clearly Y. Since we have
H{®8) = exp (Y for all {, we have 8(f) = o(t) for |§] < @, which proves
Lemma 1.

Corollary. FLef © be an clement of §; if Y(0) = ZnY,, we have
6()el for [t} < a(Zv) ™2
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This follows at once by applying the lemma to the sequence
o, = O(k~%) with u; = ﬂg(Et‘?)—ﬁ.

We shall now prove that by is a vector space. First, if ¥ = Y (©)eh,
and geR, aY belongs to B because it corresponds to the continuous
homotmorphism ¢ — 9(at). It remains to prove that, if £, = Zu; ¥y,
Z, = =v;Y; both belong to by, Zi+ Z, also belongs to b Let
01, ©: be the continuous homomorphisms of R into @& such that
Z, = Y(Gl), Zz = Y(eg) We set

o = (k00 (k1) (1 £k< o) ~\

For k sufficiently large, ¢xel/. Moreover, we have %iH (k1)
= wh !, (HO:(k)) = vk™". By formula (3), §X, pL{120, we get

Ha) = s o) + B A G

N\ . .
where the functions 4;(k) remain bounded whoflipinereases indefinitely.
We may assume without loss of ggngrality that Z; + Z: # 0;
then we have op 7 0 for k sufficiently lggé, and

Ao = I (s A0 + Ak

where A(k) remains bounded it follows from Lemma 1 that
(S(us + 2D~ (Zs + Z)ehAnd thorefore also Z1 + Zagh. which com-
pletes the proof of our statément that b, is a vector space.

By making use of{the corollary to Lemma 1, we sce that any
element of the fum&éx‘p Z7u,Y; is the image under H of an element of
Uil 2hul < a?a, >

Let U bethe set of the elements o2l/ such that g, (He} = - * -
= y.(He) ;:D. We assert that {71 is @ neighbourhood of € in 3.
If ]u{:}uﬂ, « v, |u,| are sufficiently small, the element
. .;'\ (exp ZTw; Vo lexp 27 Y s)
..\:b?élbngs to V and its coordinates may he expressed as analytic fune-
N tions ¢(ur, « - -, wa) of ug, = - e I ug = Oiu, we have ¥: = 8%,
whence
N D R/
(i) = & and (—--4'—(%’ ) ¥-) = 1.
au‘j w=0" D(ulr e ,uﬂ) u=0
1t follows that there exists a system of coordinates (21, 2, ~ * * > Zn)

on § at # such that the formulas

Zg((exp Eiu,’Y.:) (CXp 2:.'+1‘I,£-§Y5)) = Uy (1 S 1 -.<\ ﬂ)
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hold whenever [u;] < b (1 £ ¢ € n). Let Vabea cubic neighbourhood
of % with respect to this system; we assume that ¥ is of breadth <&
and is contained in V.,

We assume for a moment that Uy is not a neighbourhood of e
Then there exists a sequence o) of elements of T not belonging to I/,
such that lim o, = ¢, HoygVo. We have lim z;(e:) = 0; for k sufliciently
large, the element oxp Ziz:{e:) Y: is the image under H of an element
spelU; moreover, gince lim exp Zlzi{ex)¥: = # and H is a homeo-
morphism of U into ¥, we have lim o}, = e We set

" LA '\
o = (oo \
A\
For & sufficicntly large, we have oi'el/. Since otel’), we haygye, 7 e
for k sufficiently large. Moreover, we have ~\ N

Ho! = exp E7 2{Ho) ¥y ...'\“'.
and henee v

) = « - =y lHel) =0, yrn(Hop= zea(Her)
N

By replacing if necessury the scquenng;a};by a sub-sequence, we may

R Wy H

assume without loss of generalitytthat the sequences vilon) have
oY d(He)

yg(f {o1)

J(Ho) S_l)- We have clearl-y

Uy = Ug = - -+ = Uy & ;~’E;‘+1uf = 1. By the lemma, it follows
that the clement 22;‘+11;3',- belongs to B, which is a contradiction with
the fact that { ¥y &5 , ¥,] is & base of hi

Therefore, ot statement that U, isa neighbourhood of ¢ is proved.

'O’Hlave Ho = exp Ziy(Ho)Ye We set xilo) = yi(Ho)
(1 £1 £ HN"The mapping which assigns to ¢ the point {a.(e),

-, a@)} obviously maps U/ homeomorphically onto a sub-
set,of B which contains the eubc defined by the inequalities |zd < @
(K2 < ).

There exists a number ¢’ > 0 such that the conditions |y:{ry)| < &,
lys(ra)| < & imply 7i77'€V. 1 we denote by 7] the set of elements
eel; such that |ze)l <& (1 £é=7), the conditions o1,0:801
imply ¢105¢l/, and the functions zi(o107") may be expressed as fune-
tions of ziley) « - * z.(o3), #ilos), - © -, ZAoz); these functions are
defined and analytic for |z:i{an)| < &, |2:(e)| < @',

The fact that ® is & Lie group will follow if we can prove

NS

limits »; (1 =1 = n) be\oﬁuse

If o2 LYKKB
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Proposition 2. Ll © be a topological group. We assume thatl there
exists a neighbourhood U of the neutral element ¢ in @ and a system of n
real valued funciions Ti, Ta = 7 ° 5 Tn defined on U, with the following
properiies: (1) the mapping o — (#1(), *  ° , 2.(0))} 75 a homeomorphism
of U with the cube Q in £” defined by the inequalities eyl < e (1l £4 =),
a being some number > 0; (2) there cxists o number ¢/ > 0 (¢’ < @)
and n functions filur, x0T, Un U P2 " T T v.), defined and
analytic in the domain defined by the inequalities |wi] < @, nil < o,
(1 =1 < n} such that the formulas v el alor™) = Jdxla), © - -y
aa(o); 2a(7), © 0, TalD) hold under the conditions |zia)| < a7
<g (tEisn). Then®isa Lie group. A

Let @, be the connected component of in®. Sinece M ¢ neigh-
bourhood of e and is connected, &, s obviously open. | }is sufficient
to prove that ®, is a Lie group. Thercfore we may‘b:’ssume without
loss of generality that ® itself is connecied. ""\i’

We denote by ¢, the lefi-translation assceiated with o in ®, and
by @(¢) the class of real valued functions Qeﬁned in neighbourhoods
of o in ® and which depend analytical f/on the functions . © o™
22O o, + * °, Tw O ¢o ! around o: NWe assert that the assignment
o — Qo) defines a variety whose u;lﬂe’rlying gpace is ©.

The conditions I, II of $1, @hapter 111, p. 68, are obviously satis-
fied. Since ¢.i8 a-homeomqpphii”sm of @ with itself, the properties (1),
(2) of condifion III hqld~fm our cage. 1t remains to check the
property (3). Let U’ bé.the set of the elements cel/ such that [z:(¢]]
< o' U is a neighbouthoed of e HenceolU''isa neighbourhood of ¢
Let r be any elem&\t of this set; we have r'¢ = [el7. We have (x:
0 ¢ Do) = glortp) = wloirrip) = mEe) = S,
PR Ca FRE T o FELIC Z.(p~'7)), these formulas holding provided
el \,c@sU’. This proves that the functions 2 © ¢s1 belong te
G(o); hus property (4) holds,

_The assignment ¢ — Qo) defines therefore a manifold ¢ It is

_ plwious that the mapping (s, 7) — o7~ of § X § into § is analytic
<\.at the _POiﬂt (¢, )6G X G. We have yet to prove that itis everywhere
analytic.

It follows immediately from the definition that every left-trans-
lation @, is an analytic isomorphism of the manifold § with itself.
The same applies to the right-translation . associated with ¢; in
fact, let us first assume that leia)] < a {1 £¢=n). The mapping
J 11 — rLlis clearly analytic at ¢, and ¢, is obtained by first performing
J, and then the mapping r — +%¢ which is analytic at e provided
le(e)| < @ (L £¢£n). The formula yor = 70 = ¢, (75 70} ShOWS
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that ¥, is analytie at every point ro if o2{’’. But {7, being a neighbour-
hood of e in the connected group ®, is a system of generators of ®,
Hence any element #5® may be written in the form gyms + - - a4 with
ocel/’ (1 €7 Ek. We have o, =, 0y, , 0 - - - Oy, which
shows that ¢, is an analytic mapping.

Now, in order to prove that the mapping (s, ) — or ! is analytic
at every point (aq, 70}, we write

ot = gy(oy o) (77 ') gt

it is obvious that the mapping (¢, 1} — (o7, 757} of § X gdto
itself is analytic at (s, 70). Since ¢y, and ¥, are analytic mappings,
and since the mapping (o, 7) — 077! is analytic at (¢ ¢, lt‘“@ also
analytic at (#q, 7). O

Therefore § is the underlying manifold of an analyti€’; group, whose
underlying topologlcal group is @&, and this complete% the proofs of
Propositions 1 and 2. \

Corollary. Every closed subgroup of a Lie grady is a Lie group.

In fact, a Lie group being locally compaciy] ﬁ‘é same holds for every
elosed subgroup of a Lie group. \

We observe also that it follows nnzmechately from Proposition 2
that any topological group whlch".n-,“locally isomorphic with a Lie
group is itself a Lie group. If &us a Lie group, ® is clearly locally
simply connected. Therefore, 3 ® is connected, it admits a simply
connected covering group (8:9), and we see that ® is a Lie group.

§XV. GHOUPS OF AUTOMORPHISMS

\ . I3
Iet H be a subgnu}} of GL(n, €). Denote by zi{s) (1 £ 2,7 € n)
the coefficients ofadmatrix ceGl{n, €). We shall say that If is an
algebraic subgro@{p\ of QL(n, €) if there exists a set of polynomials

P -+, 2y ) in n® arguments (e running over some set of
indices) s@'h“ that the conditions
.\’r.:" ol
apd\\.
N Pl zyle), - ) =10 (for all )

are equivalent. For instance, SL(n, C) and O(n, €) are algebraic
subgroups of GL{xn, €}, and Sp(n, C) is an algebraic subgroup of

GL(2n, O).
Denote by xj(c) and i (¢) the real and lmagmaw parts of x;(s).
If we can find 2 set of polynomials @s(- - - =i, 2 - - ) in 2a? argu-

ments such that the conditions ¢eH and @s(* + - ai{e), zi{e), + + )
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= 0 (for all B) are cquivalent, then we say that H is a pseudoalgebraic
subgroup of GL{n, C). Tor instance, GL.(n, R}, SL{n, B}, O{n}, SO(n),
U(n), SU{n) are pseudo-algebraic subgroups of GL(n, C); Sp(n) is a
pseudo-algebraic subgroup of GL(2n, ).

It follows immediately from the Corollary to Proposition 1, §XT1V,
p. 130 that any algebraic or pscude-algebraic subgroup of GL(n, C)
is a Lie group {(when it is considered as a topological subgroup of
GLin, CY).

Now, let g be any algebra over the field £ of real numbers; i.c. g s
a vector space of finite dimension »n over K in which there is defined a
bilinear law of composition (X, ¥) — XV {we do not require 2Dy, other
condition than bilinearity for this law of composition). The auto-
morphismg of the algebra g clearly form a subgroup ¥ of j;he group of
automorphisms of the underlying vector space of g (i, of GL{(n, R)).

Let {X,, - - -, X.} be a base in g; with respect to $his base, every
automorphism o of g is expressible by a matrix falso denoted by o).
Set O

0\

a(X) = PraaX; (WK < n)

Then the conditions which express tb.af; % is an automorphism (i.e. the
conditions (XX} = a(X}a(X)ean be expressed by a cerfain
numbcr of algebraic relationshipstbetween the coefficients ay (which,
furthermore, must be real), “T& follows that 9 is a pseudo-algebraic
subgroup of GL(n, R) and i therefore a Lie group.  We shall determine
the Lie algebra of thliLfoﬂp Let a denote this Lie algebra. Then «
is & subalgebra of the'Lie algebra of GL(n, K}, and the elements of o
can therefore be congldered as matrices of degree n with real coeffi-
cients, i.c. alsoNds’ linear endomorphisms of the underlying vector
space of g. %ét "4 be a matrix belonging to a.  Then, for every real ¢,
exp {4 153{1 automorphism of g, whence

_\.:}z (exp tA)XY = ((exp tA)X){(exp t4) V)
k{z? any X, Yeg.
Let E he the unit matrix; then

(B + 14 + £4)XY = (B + 14 + 2AYX)(E + 14 + £AYT)

where 4, i3 & matrix whose coefliclents remain bounded when ¢
approaches 0. 1t follows easily that

1) AXY) = A(X)Y + XA(Y)
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Any linear endomorphism 4 of g which satisfies (1) is called a
derivation of the algebra g. We have scen ihut every matrix Aeg
is a derivation of 9. We shall see that the converse of this assertion
holds true.

Let A be a derivation of g, - We have

'
AP (XTY) = 3, g;;ﬂ‘(X)A:'(Y)

"\

where the summation is extended over sl pairs (4, §} such that i 20,
20,147 =p(weset 4° = By, Write ¢\
NS ¢

t—lffl.’(X) J_IFAJ(Y) = ELlhgﬂX}c “'( “:’«.
AV

We know that the coefficients of A¢ ave smaller in'@hsolute value than

M¥, where M is some constant. It follows egsily that the double

series S|l are convergent, whence \\ ’

(exp tA)XY = 3 3—1] A0 3—1, A:'(X’)'..él(ﬁem t4)X) ((exp tA)Y)

which proves that exp tde%(, whenve Asa. We have proved

Proposition 1. Let g be any algebra over the field of real numbers.
Then the derivations of g forena subalgebra of gl(n, R) (where n is the
. dimension of ), and thisgigelra is the Lie algebra of the group of auto-
morphisms of q. . N

Assume in partisilar that g is the Lie algebra of a simply connceeted
Lie group ®. Lebabe any automorphism of g; then there corresponds
to @ a continuaiﬁs"homomorphism # of @& into itsclf such that a = 44
(af. Theorel\r(‘z, .§VI, p. 111). Since « is an automorphism, it has a
reciprocal mapping o which is also an automorphism, Let 6 be the
contingous homomorphism of & into itself which corresponds to of;
thefiNdh © ') = 2 0 o' is the identity mapping of g. It follows that
f ;‘Kﬂ’ is the identity mapping of @. In the same way, we see that
# 09 is also the identity mapping of &. It follows immediately
that 4 is an isomorphism of (& {considered as a topological group) with
itsclf (i.e. it is an automorphism of the underlying group and a homeo-
morphism of the underlying space with itself). Such a mapping is
called an automorphism of the group ®. Conversely, we see easily
that to every automorphism # of ® there corresponds an automorphism
a = df of g. Therefore we have proved:
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Proposition 2. Let © be a simply connected Lie group. Then the
group of automorphisms of © is tsomorphic with ¢ Lie group whose Lie
algebra is the algebra of derivations of the Lie algebra of &.

Denote by @, the automorphism of @ which corresponds to an
sutomorphism e of g.  If Xga, we have 8, (exp X) = exp a(X), which
shows that 8.(exp X) depends eontinuously on «, for X fixed. Since
© is connecled, any ¢ may be written in the form o, - - - o3 where
each o; is of the form exp ¥;, Y.eg. It follows immecdiately that
8.{s) depends continnously on « for ¢ fixed.

Now, let & be a connected Lie group which s not simply conne\[ed
and let (Gj f) be a simply connected covering group of &. Lehg be an
sutomorphism of @. Then # 0 f is a continuous homomol\phihm of &
into &. Denocte by e and € the neutral clements of § {md ® respec-
tively. DBy Proposwmn 1, chapter IL, §VIII, p. 50, tﬁere exists aum-
tinuous mapping  of @ into itself such that f o Bmaﬁ ofand 8(8) =
The mapping (5, 7} — 0E9) ()~ (B(F)~" waps continuously the
connected space ® X ® into the kernel F R which is discrete. It
follows immediately that 6(#)(8(&))— k@( Y1 =§ which proves
that § 1s a homomerphism of & into 1t~,(*1f Let ¢ bc the reciproecal
automorphism of ¢; then, in the same way, there corresponds to ¢ a
continuous homomorphlbm # of @j Tnto itself. Furthermore, we see
immediately that there existsta neighbourhood of #in & on which
both 80 # and # o § comcide with the identity mapping. Since &
is connected, § 0 § and #4C"F both eoincide with the identity mapping
of &, which shows that 9‘18 ant automorphism of &, Turthermore, we
clearly have §(F) —\R

Conversely, 1668 be an automorphism of & such that §(F) = F.
Let ¢ be any elément of ®, and let # be any element of ® such thai
fe) = . Then the value of F(9(@)) depends only upon ¢, not upon
the choted of 7. If we set 8(c) = f(ﬁ(cr)), we see eagily (by arguments
of the, s\ne type as above) that 8 is an automorphism of ®. There-
fore* the group of automorphisms of @ may be identified with the

g;up of those automorphisms of & which map F into itself. Since
\F is closed, it follows froma the remark which follows Proposition 2
that this group is a closed subgroup of the group of automorphisms
A of & (in the topology which makes 3 a Lie group). We have
therefore proved that the group of automorphisms of any connecied
Lie group s tsomorphic with ¢ Lie group.



CHAPTER V

The Differential Calculus of Cartan

Summary. §$§I and IT are algebraic in character; their object is to con-
struct the Grassmann algebra A associated with a given vector space I
For reasons of convenience we have arranged the eonstruction in such a way
that the dual space of N (and not N itself) is contained in %; i.e. the clements
of A are alternating contrasariant tensors. .

In §II1, we define the exterior differential forms of Cartan on a mani\fold
and thelr differentiation. * These forms behave in & contravariant Ry under
an analytic mapping (this is why we introduce the notation ‘‘# ™4ghich is
considered as dual to the “d” of Chapter III). The operation €k proved to
commute with the diffetentiation (formula (4), §I1I, p. 146}

In §31V and V, we apply the differential ealeulus of Cartan to the theory of
Lie groups. The notion of left invariant differential forfo % defined; the left-
invariant differential forms of order 1 are the forms of Maurer-Cartan,
Their differentiation is determined in terms of the Liahlgebra by formula (2),
§IV, p. 152. Tt is shown how the forms of Mzm%epCartan can be explicitly
constructed (in canonical coordinates) if the Lie“algebrs is known. A very
simple example shows how if is possible toafsive by this method at an exphicit
construction of the law of composition m'the group, However, it should
be observed that, if one does not insigtharf using canonical coordinates, there
are simpler methods to get the same gesult which we shall discuss in volume IT,

The remainder of the chapter ig\¢oncerned with the integration of differen-
tial forms on a manifold. Only Porms of the highest dimension are considered
(which meoans that we do nef\prove the generalized Stokes’s formula), Aftér
having defined the orientgfion of a manifold (§VI), we construct the integral
of & function with 1'cspéc§tc'f a differential form on an ortented manifold (§VII);
the construetion is Pased on a very useful lemma of Dieudonnd, In §VIII,
we define invarianb integration on a group which will become the main tool
in Chapter VI. A"

\\ 8I. MULTILINEAR FUNCTIONS

-Let}&bé a ficld, and let Yy, Ps, -+« « , WM, be » vector spaces over

K, of dimensions my, * * * , M-

m:I:)\eﬁnition 1. An r-linear funciion on P X My X - -« X W, 45
‘Bnapping M of this sef into K such that M(ey, * » -, e,) is a linear
SJunction of any one of ils arguments when the r — 1 others are kepl fized,

i.e. we have

Mey, - - - : €1y OB; T a’e:, €1y " " T, €
=aMley * " ", e &) 81y 0 7, 8)
+ a'Mles, - -+ ey, e:s €ipy  C t,€)
if a, a'eK,
139
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Let My, M. be two such r-linear functions. Then the functions

B]M} -+ GzMz, which maps (61, ety er) into alMl(ell oty er)
+ a:M:fes, + - ¢, e} is clearly again an r-linear function.

Lot facy, © * © ,8:cm) beabaseof Do Ife; = Zapay; (1 € 7 £ my;
z;2K), and if M is an r-linear function, we have
0y Mey, - - -, @) = Zayay, ¢ Mg - 0, 2,
which shows that M is entircly determined when the quantities
Miay, - - -, a,;) are determined. Conversely, these quantities
may obviously be taken arbitrarily in K. It follows that the ‘rliear
functions form a vector space over K of dimension m1 * * «\??:%3.,

Now let My, Ns, -+ -, N, be a new system of vector spaces over K.
Let M be an r-lincar functmn defined on M; X EUEg,}( - X R,
and let N be an s-linear function defined on 9’21 X 9}2 3 IR M,
Then the funetion A defined on My X M X - AX M, X M X Re
X -+« X N, by the formula \%

@ Aoy -+ v, ef - v, £) = M(e{xg\\w L edNEy, - - -, £,

{for e, £;aM)) is clearly an (r + s)-liﬁear funetion.

Definition 2. The funciion A deﬂﬁed by formula (2) ©s called the
Kronecker product of M and N; it@e denoted by MN.

The following properties of: this operation are obvious:

1) It is linear with respeétso each argument, i.e.

(61M1 + azMe).N\—- (thN + {IQM N ((11, (I-),EK)
M(alNl -+ K?N‘z) = ae:MN; -+ azMNz,

2} If By, Bo, ¥\, Puis a third system of vector spaces over K,
and if g a ighncar function defined on P; X Pp X - + + X Py we
have o\

:"\." (MNDII = M(NTI).

If n&1, the r-linear functions on M, are simply the linear mappings
of E]}h nto K
N\ Deﬁmtlon 3. The vector space composed of the linear mappings of ¢
}tctor space M into K is called the dual space of M and denoted by DY
If {ay - -+, ax} is a base of M, to every 7 (1 € ¢ € m) there
corresponds an element €0 which is defined by the conditions ¢:a;
= &;.  Moreover, these m elements of M’ form & base of PV, which is
called the dual base of the base {ay, + * + , a,} of M.
Let 2 be any clement of M. Then, if we consider ¢(a), for e,
as a function of ¢, we obtain a linear function ¢, an Y¥: ¢, = ¢(a).
Moreover, the mapping a — ¢, is clearly & linear mapping of M inte
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"= (Y. I a= Zra;is 5 0, therc exists at least one e’ for
which (a) = 0,—for instance ¢ = ¢; if 2y % 0. Thercfore we have
#a # 0, and the linear mapping a — ¢, is univalent. Since M and
I have the same dimension, this mapping is a linear isomorphism
of M with M. We may ecall it the natural somorphism of I with M.

It {ollows in particular that any basc in 9 is the dual of sowme base
in 9.

Proposition 1. Let 9, My, - - -, M, be 7 vector spaces over K.
Let {en, e, © © *, ¢m,} be a base in the dual space M) of M. Then
the my - - - m. elemenis @y, - - - o (1 £ . € ma,l L alT)
form a base of the space of r-linear functions on M, X MWe X O M.

In fact, let faiy, - -+, asn.} be the base of M of \1}110]1\{@. 1 @i

- goi-,,,.‘.} ig the dual base We have

U T ALk Bagy 0, Bng,) = 5:1&151{!;“ * Ok,

which, by comparison with formula (1), proves\Rreposition 1.
§II. ALTERNATE FUNCTIONS

We shall now consider r-linear functmn} A defined on the product
W of r vector spaces identical with a &iven vector space I of dimen-
gion m! over a basie field K which iy wikdumed to be of characteristic 0.
Let $, be the space of these r- lujiem functions, for r 2 1. We shall
denote the sot K, considered asdvector space of dlIn(’Ilnlon 1 over K, by
Ho. et us form the set IIZ%H,. An element of this set is a mapping
which assigns to overy T ¢ ;’\9 an element A,2%,. We shall congider the
subset O compozad h{\thme elements of 28, of which almost all
coordinates A, aregdqual to 0 (i.c. all except u finite number). If A
= (Ao, Ay, - o8008, ) and M= (Mo, My - -+ My, - ) are
any elements @\1 £ and if ¢, beK, the element

ak —|— BM = (gAg + BMy, ary + 0My, - - - ad F BMy - - )

also belongs to ©. It follows immediately that £ iz a veetor space
(oirnﬁxllte dimension} over K. An element of £ is called homogeneous
c&of‘der r if all its coordinates are zoro except perhaps the r-coordinate.
Such an element may, without trouble, be identified with its r-coordi-
nate. If we make thesc identifications, the clement A = (A, Ay,
*, &, ' - -} may be written in the form 2FA,.  (The symbol Z2
stands for =¥ where R is an integer so large that A, = 0 forr > R.)
In §I we have defined the product AM; of an clement AED, by
an element M,£9., provided rs > 0. If, for instance, r = 0, Ay s an
! These r-lincar forms are called ““r-times contravariant tensors,”
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element of K, and A¢M. is also defined since 9. is a vector space over
K. The same remark applies if s = 0. Moreover, the formula
AMIN: = AL MMNIAED,, MED,, N&D:) remains valid if one or
more of r, s, £ is to 0.

We may now define the product AM of any two elements & = 24,,
M = =M, of © by the formula

ﬁm - E:,=0ATM8
This means that the {-coordinate of AM will be ~
(M)s = Er+a=tArM8 ,\:\

This obviously vanishes if £ is sufficiently large, when RFAES.

It is a trivial matter to verify that £ becomes"& ring under this
multiplication. If F is the element (1, 0, 0, -+, Eis tho
unit element of this ring, »

We shall now define an operation in & whlch we call allernation.
Let A be an clement of §,, and lot & héydny permutation of the set
{1, 2, - - -, r}. The function A? defined by the formula

Af(ey - - - ,e,’),-j? NI

obviously again belongs to 6,5, "Moreover the mapping A, — A% 15 a
linear mapping of $. intoitsell. We now define an operation 4.,
called aliernation, whi{E maps any A9, on

‘\\ T oA = —1, Zac(@)A7,

this sum bemg extended over all permutations & of the set {1, 2, ,
rl, w1tkk'f\fm) = 1 for even permutations @, and e(@) = —1 for odd
perm\\xtﬁatlons o Ifr=0o0r1, weset 4.(A,) = A,

,’If = Z=A, is an element of £, we set A(L) = ZpA,(A,). Then

i A is a linear mapping of £ into ifself.

\M}“ We denote by 3 the set of elements A¢C for which A(A) = 0.
It is clear that J is a vector subspace of £. We shall now prove
the remarkable fact that & is actually an ideal in . In other words,
the condition A(&) = 0 implies A(MR&) = A(AM) = 0, for any MeD.
Tt is clearly sufficient to prove this for the case w here A = A9,
M = Me®.. Setting Noy» = 4.,(AM.), we have

(r + s} Nwsleny - - -, e

Zael@)As(€apy - ¢ -, eﬁ(r})Ma(elﬁtr+1n Ty e(ﬁ(r—i—s))
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where the summation extends over all permutations & of the set
{1, - - - ,r+ s}. Let & be the group of these permutations, and /I
the subgroup composed of those which leave the elementsr + 1, - -+,
r + s unchanged. Let us consider the sum

Zaart(@) A€oy ¢ 7y o )Ma(€aiin T T ) o)

extended over all permutations & of a certain coset &ff. If we set
€auy = fi (1 £ 7 £ 7), this sum may be written in the form

e(&ﬂ)MS(eﬁn(rﬂ{-lJ! T, eﬁo(r+s))(Za’me(&’)ﬁr(fa’un SRR FUSY R

since e(@o@’) = el@a)e(d’). But the opcrat-ions of H indi 0" Ahe
complete set of permutations on the set {1, + + -, 7}, and hence the
second factor is 0, It follows that A, . (AM,) =0, andwe gan prove
in the same way that 4,,,(M,A:) = 0. {

It follows that the set /% of the residue-c lagsbs of modulo 3
is again g ring, It is also a vector spage over NE. We claim that
it is of finite dimension. In fact, let us choode’n base {w1, @2, * * *
¢l in the dual space N = D, of . ]fq,o:l any element of I, we
have *e3. In fact A(¢®)(en, €2) = (B){E@De(e2) — olepler)) = 0.
It follows that s + g = (u—)(@@» oot — o — el (154
j & m). .

Let ¢; be the residue class of o modu]o . We have

QY

oo =,~§¢=,- ef, (@) =0

,‘

It follows that a product\qo,l, er + + + o does not change if we perform
an cven permutation\of the factors, and is changed into its negative
if we perform ang 2odd permutation.  Morcover, it is equal o 0 if any
two factors are’e e\qual This certainly happens if v > m.

We hayelseen that the elements gagi, - - * @, form a base of
H.af r > {)"\ Tt follows that . ( Jif r > m, and that every element
of £/ 3\13 “a linear combination of the elements

N E*erer o en  withii <o <4 &m

where E* is the residue class of E. There being 2" such elements,
0/% is a vector space of dimension at most equal to 27 We shall
see a little later that the dimension of O/J is exactly 27,

For the moment, we shall exhibit a complete system of repre-
sentatives of the residue classes of © modulo J-

1 Cf, Proposition 1, §1, p. 13%.
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Definition 1. An r-linear funciion A, s said fo be alternale if

A2 = (@A,
Jor every permutation & of the set {1, - - -, r}.
(If r = 0 or 1, any element of H, is considered to be alternate.}
Similarly, an element A = {Ag, *+ * *, A, * + -) of O is said to

be alternate if every coordinate A, is alternate.
If A is an arbitrury element of O, 4{4) is alternate. In fact, we

have, for r > 0, A,28,, Q)
| o - Ko
(400" = Se(@)a7 = 6(“’”) Se(Go@) 457 = e(,cag)}r,?a,u)
where @ 18 any permutation of the set {1, - - -+, ?‘} :

Moreover, if A is slready alternate, we havec{(‘;\) A, Tn faet,
it r > 0, and if A, is alternate, we have
1 R\
A.,-(A,-) = _T E{:g(f._o.)}\‘-“: Ar
7l \

It follows that the operation Avs'idempotent: A4 = A.

Proposition 1. Any element f\eﬁ can be represented in one and only
one way as a sum, M + N,“Qf an alternate element M and an element
Ne.

In fact, we have A~é\z1(&} + (A — A(A)); A(A) is alternate, and
we have A(X — @}) A(A) — AA(A) = 0, which shows that
A - AR)ed. ConverS( 1y, suppose that A = M + N, with M :»,thf,r-
nate and Naf\i’ “We have 4(X) = A(M) + A(N) = A(M) =
whence N =0 = 4(k),

Let %-bé/the sct of alternate elements in £. Then % is obvicusly
a vect&\s‘pace over K, and Proposition 1 shows that there exists one
ands only cne element of % in any given residue class (:-f £ modulo 3.

(Mt - - dareindicos with 1 € 4 < » - - <4, € m, then the
\elcmcnt Aoy, - - @) is alternate. Tt is equal to

I

?T! Zae(@)eatiaty * * C a)

where the sum is extended over all permutations @ of the set I = {4y,
*, &}, 1t follows from this expression that the elements A,(e,
* ¢i,), corresponding to the various subsets 7 of r elements from the
set {1, - - -, m}, are linearly independent, Since the residue class
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of A, (e L @) modulo J is the same as the residue class of ¢;, - - -

@i (i.c. @y o qa,,), it follows immediately that the (™) eloments
P . (for 1 €41 <+« <4, = m) are linearly independent
in Q/Sﬂ

The product AM of two alternate elements of is in general nof
an alternate element, as can be verified easily from examples. Tlow-
ever, there exists one and 011ly one alternate element which belongs
to the same residue class as AM modulo §, namely the element 4 (AM).
Therefore we may define a law of composition in i hy the for muLa\

AoM = A(GM) .
2 )
We shall eall this law of composition the Grassmann mulliplication.
It is clear that the veetor space ¥, equipped with this Ia,\\ of, eomposi-
tion, becomes an algebra over X, isomorphic with /30

Deﬁmtmn 2. The algebra composed of the afigae‘rfm?:e multilinear
Junetions, with the Grassmann multzplication as the lwf composition, is
catled the Grassmann algebra of the space M. L ND

It follows from cur previous considcrati@@ that the Grassmann
algebra is of dimension 2= over K. Tt cohlains 2 unit element E, and
containg the dual space M’ of T2 Moreever if e - -, em) iz a
base of I, the clements ¢, * -+ -, ¢ Sborm a set of generators of the
Grassmann algebra. We have ™ Y

Ny

&ND ¢ = 0
wi B+ qo;'iﬂ,}.‘ =, (1<4,7<m
and the elements ;O @;}D + + - Og; corresponding to the various
subsets {7, - - -, gppvef the set {1, - - -, m} (with ¢, < - - - <4,

£ m) are linearlyindependent; every element of the Grassmann
algebra may .l:{e:‘\ﬁitten as a linear combination of £ and of such
elements, nelement of the Grassmann algebra which is an alternate
r-linear flmctmn is sald to be komogeneous of order v (if r = 0, 1.e. the
(l{,men’rf\is in K, we adopt the convention of calling it a O-linear form).

&P;’IICATION Let ¢y, ¥z, - - -, ¢ be any r elements of N
[f wd take r linear combinations

0; = Zi_oi (1<€i<q),
of these elements, we have

0,006;,0 ¢ - DQ,: airlplm\bzu o Dilbr

as can easily be verified.
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Hr=mandif ¢y, - * -, ¥mare linearly independent, they form a
base of PV, and we know that 4, O YO0 - Om 5% O If now ris
arbitrary and if ¢i, - -+, ¥, are linearly independent, we can find
m — 7 elements i1, + © * 5 ¥m of W such that ¥, -« * , ¥ ey
.+« , ¥m are linearly independent. We have ¥y Odp 10 -+ - O,
# 0, which proves:

Proposition 2. If ¢, = - -, ¥, are 7 clemenis of M, a necessary

and sufficient condition for their linear independence tsthaify O O+ +
O, # 0. Moreover, if we replace these elements by linear combinations
of them, their product in the Grassmann algebra is multiplied by an
element of K. O\

If N is an (n — r)-dimensional subspace of IR, the efements e of
9N may be characterized as those which satisfy » lineaxr erfuations,

¢ e) = - - = le) = 040

where ¥1, * - - , ¥ are linearly independent glements of PV, More-
over, if the formulas (1) define M, any ’atflskr‘ set of r equations of M is
obtained by replacing ¢1, - -, ¥, b¥X Vv linearly independent linear
combinations of them. Therefore ghet éubspace N may be character-
ized by the product $1 O ¢ O - ¢\ O ¢, and this product, conversely,
is determined by M, except ﬁoﬁ;a' constant factor.!

§IIL. THE I}mﬁEiiENTmL FORMS OF CARTAN

Definition 1. Lg{"‘@‘be a manifold and let p be a point of V. The
Grassmann algebrargssociated with the tangent space lo U at p is called the
Cartan differential algebra at p.

We shalhdénote this algebra by €,.

Deﬁniﬁiﬁn' 2. If we assign lo every poini p of a subset 4 of UV a
homogereatis element of order r in §,, we obtain what s called a differential
fomgg order v defined on A, A differential form of order 1 is also
colled a Pfaffian form.

~LJ A differential form of order 0 is therefore simply a real valued
function, and we know what it means to say that such a function is
analytic at a point p of the domain of definition. We shall now
extend this nofion to a differential form of any order.

An element of order 1 in €, is'an element of the dual space to the
tangent space ¥, But we have alrcady scen that this dual space

11+ was precisely in order to handle analytically the linear varieties of any

dimension that Grassmann developed his “geometrical caleulus.”
* Also called “exterior differential form.”
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is the space T, of differcntials at p.! Let {z,, + + + | z,} be a coordi-
nate system at p; then, for every point q of a neighbourhood of p, the
diffcrentials (dzi)g, - -+, (dz,)q form a base of D,. Let 6 be a
differential form of order r, defined in a neighbourhood of p; we may
express the value @, of # at a point g in the form

(1) B = Zus - - 5@ (de)g O 0 ¢ - O (dxi)y,
this summation being extended over all combinations {7y, * « + , 4}
such that 1 € 43 <+ + <4, € n. ~

We shall say that the form € is analytic af p if the functions u; N,
arc all analytic at . To justify this definition, we have to show
that it does not depend on the particular coordinate systém’ used.

Let {zi, - - -, 2.} be some other coordinate systemgat'p. We
may express ¥i, - ©, % in the neighbourhood of p/ps functions
fulzs, - - -, wh), 0, falzl, v v o, 2h) of the neﬁ";}oordinates ¥,

and these functions sre analytic at the point)et = zi(p), « - -
z! = u/,(p). We have, for g sufficiently near gy~
"~

n BJ‘, ."’x
@) = T (@,);..(dx;) .
a i . df: ':.. ’ ’ .
wherve —f, is the value of—f-, fora} = z{g) (1 € j € n). Hence
a.‘t??- 7 ax?-,':.
D(fin f& - -, f2)
8, = Zui,..i.{q) (—({M) (dx;l)q oo (de),
D(k\%n: oo ,ﬂ?,-,.) 2
where the summaj;icfgfn’ is extended over all systems (¢y, - * *, %
J 0 0+, 40 suckthat 4y < - v 0 < gy i < v 0 <G I we set
(N
O/ D(fi fo = 5 S
[4 N . ) g .
Qi'"'fﬁk\...fr(Q) = 2»1.-.-»“‘1‘-%(@) (D(a:;l, :B;g, . ,x;r) .
\\:" 8qy = Efl...j,u;l..,i,(Q) (dx_f;)q a---0 (dﬁ:jr) 2

Ii the functions u,..; are analytie at p, then the same is of course
true for the functions wuh..j, which justifies our definition of ana-
lvtic differential forms. . -

Similarly, if the functions ;... are continuous at p, the functions

)., are also continuous. In this case we shall say that 8 is con-

finuous at p.

1 Cf. Chapter EII, §IV, p. 76.
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We shall now define the operation of differentiation on differential
forms. Let 8 be a differential form of order r, which is analytic al a
point peU. If r = 0, §is a function on U, and its differential at p has
alrcady been defined. In the general case, we define the differential,
(d8),, of ¢ at p to be the element of €, defined by

(dg)ﬂ = E(du-il‘..i,)p O (dxil);a o---d (dxir)p.

Ilere again we have to show our definition is independent of the

coordinate system. Q
Before doing this, we shall first prove a certain number of propet-

ties of the differentiation operation defined by (2) w 1th ,g(,aput to the

special system of coordinates {z1, - + * Za}.
If 4, 8; are forms of order #, and a4, ae are reab m}mbers, we have
(2) (d(a1: + as82))n = ar(d0)s +.a;(de,),.

Now, suppose that 8, 9 are differentidhforms of orders 7, s, hoth
analytic at p. They are both deﬁnes'( m some neighbourhood of p
and if we assign to every point gefvthis neighbourhood the cloment
@, On, we obtain a differential form 6 0O ¢ which is elearly analytic
at p. Weassert thatits fhffer,enbml at pis

(3) d(@ ), = (d&),, O, + {—1)78, © (dn),

Suppose first tha,t‘;c >0, s > 0. Making use of (3) we see that
it wil} be suffieic nt\ﬁg prove the formula in the case where 6, 4 are given
by formulas of the type

N7 0 = u(@ ) 0 - - 0 (de)g
7wl = e(@@)e 0 - - O (da)e
with'?h\k v Ly <t - 0 < fy, % and v being analytic funetions
at .

o If the sets {éy, » - -, &}, {jy, ~ * +, j.} have an element in com-
mon we have # 09 =0, (d#), 04, =0, 8,0 (dyg), = 0, and for-
mula (3} is proved. Ifnot, letk,, - +  , k.. be the elements of the set
{i, = = * 2 Jy, * + * ju}, arranged in ascending order. We have

(B Om)q = eu(gh(@)(den)e 0+ -+ O (der,)g

where ¢ is -+1 or —1 according as the permutation

(?;1...5?3;1 C
1"'krkr+1"'kr+s
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is even or odd. Hence

(d(® B m)p = e((du)w(p) + u(p)(dv),) O (dre)p 0 - - O (drs,)»
= df, 1 7+ u(p)dﬂp = (dxs‘l)ri o (dxir);ﬂ o (dxﬁ)p
G- D (de)y

= dfy O + (—1)70, O dny

since dv, O (dzd, = — {dxg), O du,.

If s =0, r>0, we have 5, = v{g), where » is analytic at p, and
we may assume that # is given by the same formula as above. Wc\
huave \

(30 0 1) = (uw(p) + u(@)dvy) O [y © -+ [dredfa D
= d, Onp -+ (—1)76, O dy,, Dt

A similar argument proves formula (3) if r = 0. Thqr@foré: our for-

L ¥

mula iz established in every case. A\
In particular, if wi, @; are Pfaffian forms whichlare analytic at p,

we have AN

4) (1 D @)y = (dun)y O (e)y )5 O (),
It follows casily that if wy, « + +, o z;;;e' Piaffian forms, all analytic
at p, we have N
) @ OwrT - - Dw)ly &S

= X{(—1)"Yw)p B - - - Ofwi—1)p O (doidp O (@i)p O« + + O (0n)p

Let £ be any funetion oxf?.{}}analytic at p. If we assign to any point
¢ at whieh f iz analyt-ip}k}a element df £E, we obtain a Pfaffian form
df, the differential of\{> In the neighbourhood of p we may express f
as a function f*(@3" - - , z.) of the coordinates x. If ¢ belongs to
this ncighbour"l{@)d’ we have

af*
A e = 2 (—) (e
A\ 9x:/ g
] 2N ) af* . ) _
Sinee\the functions . are analytie at the point 21 = x:(g), * * *,
} i

Ea = 2,(q), df is analytic at p. We have

@), = (—i) (dzd, O ()5

axjaxi P
If we observe that

2% 244
_6Lf.._ — a—f— (dz;), O {da}p = — {(dr)s D (dx;)p
dx;0x; Ol
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we find
(6) d{df) = 0.
By formula (5) we sce that if f,, - - -, f; are functions analytic at p,
then
(7) d{dfro - - - odf,) = 0.

We are now able to prove our differentistion operation is inde-
pendent of the coordinate system, Let {zi, - -+ -, 2.} bediny other

system of coordinates at p, and let us denote by the symhol 4’ the
operation of differentiation defined in terms of this new S}“}tem This

opera,tlon has the same formal properties as d. \ O
If 8 is a form of order r > 0, expressed by formgitly (1), we have, by
@ Lo
(d8), = E(d’(”ﬁ---frdxﬁ O - SN2 dws )
By formmula (3) we have 'x:\\:
(@ (i, Dl @ - -+ 0 )50
(d Uity ‘r)ﬂ o (d.{.’i] | dxt,g R dx,,)p
+ 11 f183...4, (d (dﬁxh o d:’r'a.z | dx::,.))p
For any funetion f, we have d f df, by definition. Henee da;, D
bdy, =dx,0--- @ 4z %, and the gecond term in our last formula

is zero, by (7). The first term is equal to (dus,..,),(dw)e O
8 (dzi,)p, whichgtoves that (d'8), = (d6),.

The d]ﬂeren&tlon property expressed by (6) may be extended to
any dlﬁerentlal form: if @ is any analytic differential Jorm, we. have

'\’~ d(dg) = 0.
”\‘

I\@t 8¢ be expressed by formula (1) at any point g of some neighbour-

hood of a point p where 0 is analytic. Then

(d6)¢ = Z(dui,..s)¢ B (dzy)o0 - - - O (dai ),
whence d(df) = 0, by formulas (8) and (7).

The Effect of a Mapping

Now let W be another manifold and let ® represent an analytic
mapping of W into V. 1If ¢gW and p = $(g), d®, is a linear mapping
of the tangent space I, to ‘W at ¢ into the tangent space ¢, to U at p.
Let €; and D, be the Grassmann algebras of U and " at {he points
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p and g respectively. We shall see that there corresponds to d@, a
dual mapping é®, of §, into D,
A homogeneous element 8 of order r > 0 in €, is an alternate

r-linear form #{ZLy, - - -, L,) on §,. Let M,, - - -, M, be any r
elements of IM,; we set
(1) 81(My, - - -, M,) = ¢(d® My, - - -, dBM,).

It is clear that #¢ is an r-linear alternate form cn M, ; we set
6D,0 = 8B,(0) = 8,

We obtain in this way, for every r > 0, a lincar mapping of thre
set of homogeneous elements of order r in &, into the set of homo-
geneous elements of order rin ®,. Ifr =0, 2 homogcneou&g element
of order 0 in €, is a real number 4, and in this case we| Ssimply set
b8 = 8. If ¢ iz a non- homog( neous clement in €,, %e repreaenf ]
in the form #* =+ ¢ 4 + - + 4 @, where ¢~ is homezeneous of order
ri, and we set 38,0 = Z,58,0v% O

Hence 8¢, is a linear mapping of &, 1nto\5®\ It is also a ring-
homomorphism; i.c., we have

@) 60,(6 0 6) = (32, af) 57(68,6°)

if 6, 8 are homogeneous elements ﬂf Urders r, $in €, In fact, we
have ’

(ar o ﬁs)(Llr Ly, - - LH-S)
— "’(“’)\9\ S N ¢ PN
=Z (,r + g), (Lw(l)! 1 am) (Ja(r+1}: "w(r-}vs))
where the summy tio\n is extended over all permutations @ of the set
{1, - - -, r +a)yand where (@) is +1 or —1 according as & is even
or odd; (2) Qén' follows immediately from the defining formula (1}.
Let us take a coordinate system {zi, * '+, T} at p on V. Then
(dr:)p (VS ¢ € m) is a homogeneous element of order 1 of €, and

we t@ve
(dui)o(dBM ) = (d(x: © )My,
for every M 0%, It follows immediately that

(3) 8 (dr)p = (d{w: © ®)}e

We can now let ¢ vary on the manifold W. Let # be an analytic
differential form of order # on U. Then the assignment ¢ — 59,6
defines a differential form on W, which we may denote by é26. It
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follows immediately from (3) and from the analytic character of the
functions z; ¢ ¢ that 686 is analytic on W, If
bp = D (P)dTe)p O -+ - - O (d2s),

is the expression of 8, we have (simplifying our notation by writing
;0P = y)

(628} = Z(iri, © B)o{dyi) o O - - - O (dyi)
Hence A
(@(626))¢ = Z({d(wi.i, ©¥))o O (dys)e @ - -+ O (dyi )y
: RO
If we observe that e\
(A5, 0 @)q = 8@ (i) pag
(dys)e = 6@(dri)es 1)

we see that “\
(4 A(3%6) = 52(d0):)

§IV. THE FORMS OF M@RER-CARTAN

Let G be an analytie group. ,;We denote by @, the left translation
associated with an element o2GV'If ¢ is an analytic differential form
on G, the same is true of 828

Definition 1. The forin 6 4s said to be left-invariant if 5®,6 = 0
Jor all a6, K

If this is the, gdse, we have 8, = 5&,.0, which proves that @
is uniquely detenn%tned when . is known (e being the noutral element
of G).

The left-in¥aviant differential forms of order 0 are the constants.

Definitioni 2. A left-invariant Pfafian form is called a Jorm of
MovurepsCarian.

L@w be 2 form of Maurer-Cartan and let X be a left-invariant
uifinitesimal transformation. The value w, of @ at an clement ¢ is a
“Nlinear function on the tangent space to § at o; therefore the symbol
N\ we{X,} has & meaning. We assert that we({X,) does not depend on .
In fact, we have w,(X,) = (56,-w)(X,) = (@} (AP X,) = w (X,

Conversely, let w, be any linear form on the tangent space at e
if we set w. = 5%, w,, the assignment ¢ — ¢, is a Pfaffian form on g,
and we have w.{X,) = constant, for any left-invariant infinitesimal
transformation X. Wehave (8@,.,,,)(X,) = oo (AP, X o) = wo0{Xoor)
= w{X) = w,(X,), from which it follows that w, = 6®,w,, for any
oeG: w 1s invariant. We shall prove that  is also anslytic. Let us
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take a system of coordinates {z;, - - -, x.} at an element 042G and a
base { X1, - - -, X4} for the Lic algebra of G, If ¢ is sufficiently near
Lo o5, We may express w, in the form Z4:(0)(des).,, and we have

I

(1) _ w(X;) = Ziddo W Xz (2 L, n).

The left hand sides of these equations arve constants. Since (X1,
-, (X.)s are linearly independent, the determinant

(X0)d ~\

does not vanish, and the linear equations (1) may be solve& \for
Ailo), , Aa(g). Bince the functions {X;x), are analy fie) at oo,
the same i'-a true of the [unctions A:{e), -which proves the analvticity
of w.

We see that, if n is the dimension of G, there exisi ”‘x\acﬂ\ 7 linearly
independent forms of Maurer-Cartan, say wi, - N\ @ It is clear
that, if the e;..; are any constants, 2 4 L.\(\h,l ¢ - Owy 18 a
leit-invariant differential form of order r, zm&\fhat any left-invariant
differential form of order » > 0 may be w Fibten in this form.

Any left-invariant differential form.¢ of order r > 0 may be con-
gidered as an r-linear alternate form on the Lie algebra g, of G, by
setting (¥, - - -, ¥, ) = 81((1’11{, v, (V). We may there-
fore identify the left invariant, différential forms with the homogeneous
elements of the Grassman al‘gebra associated with g.

If »is a form of aqrer -Cartan, we have §®, du = dé®.w = du,
and de 1s also left-lmarm t. We shall prove that

@ ' ldw(x V) = &e(X, Y1),
”\5
where X ar«@\Y are any elements of g.
Usmg “I;he above notation, we have dw = Zd4; O dx;, whence
Y
O du(X, V) = (3)SdAX0ds(Y) — dAL(T)dn(X))
= B (XA (Yz) — (VA X))

-On the other hand, we have Z4;Vz: = constant, whence

= X(ZA:¥z) = S(X4)(Vz) + ZA(XY=),

and similarly,
0 = (YA X)) + ZALY Xx0).
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We may therefore write
du(X, V) = ) ZA(VXx: — X¥a)
= () 24X, Y]z,
which proves (2).

Let {Xy, - - -, X.} be a base of the Lic algebra g. We can find a
dual hase {wy, * » +, w.} for the forms of Maurer-Cartan, i.e. a base
such that w{(X;) = §; (1 € 4,5 $ n). We have

[Xs, X;] = EkCiijk N\

where the ¢y are the constants of structure. It folquy:s\fl‘om {2)
that dwu(X:, X;) = Fcw. Taking into account the “équalities
Cin + G = 0, it follows that A

a
S D

7 g"
o\

3) ow = (&) Tesesnen O wf.

Tet {zy, + * +, 2.} be a system of coordidates on G at the neutral
element ¢, and let ¥ be a cubie ncighboug'}@od of ¢ with respect to this
system. If o¢¥, we can write (w), inéthe form

(@i)e = 2,1.114&(5’31(9'); cre ;’xﬂ(é))(dxa)ﬂ =1, -, m),

where the function Ay(zi, * « \\y "x,.) are defined and analytic in the
domain defined by the inequalities [z — :(¢)| < @, @ being the breadth
of V. We seb ~N

'iw}.s;:;(x, dx) = Zidy(x)de;.

AN .
If ¢eeV, the funchnns zi{ew) = y:{o) are defined and analytic in a
neighbourhoodyef’e. The left-invariance of «; gives the relations
A

23*‘1;3(9'1(0’),\?)’2(0’), T, yﬂ(g))(dyi)a
O~ = Zdilon(o), - - -, 2alo))(dzi)s
The}:functions ¥ilo) may be expressed as functions w(z:(o), © - -,

. a:}}(c’r)) of the z-coordinates of ¢ (these functions being defined and
Sanalytic provided the quantities [x(e) — #:(e)| are sufficiently small
(1 £ 4 < n)), and the functions yy(zy, - + +, ), - » - , 4 (T,
z,) satisfy the ecquations

t

(4) iy, dy) = wilz, da),

which are called the equations of Maurer-Cartan,.
The determinant ’A,-;(xl, Cee xn—)l does not vanish for |z; — z:(e)]
< @. Therefore the cquations (4) yield expressions
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ay.-
(5) a—;]','; = F‘T(yl: Tty Ty xﬂ) (1 g irj "‘<'- n},

. oA .
for the partial derivatives % 45 functions of the y's and z’s.
T;

On the other hand, we have
(6) yi(zule), » - -y 2ale) = 2lon) (G =1, -, n)

Therefore, when the expressions «;(z, dz} of the forms of Maurer-
Cartan are known, the problem of determining the functions ()
is reduced to the integration of the equations (5) with the initial
conditions (6). The problem depends itself on the integratign.of
systems of ordinary differential equations, ) O

§V. EXPLICIT CONSTRUCTION OF THE FORMS OF MAURER-CARTAN
IN CANONICAL COORDINATES "

Let G be an analytic group, g its Lie algebra an(.} {X Lo, X
s base of g. There corresponds to this base ;u:@nonical coordinate
system! {z1, * - - , Z.) at the neutral elemewteof G Let foy, - - -,

.} be the base of the forms of Maurer-Cartardefined by wi(X;) = 8.
We want to determine the cxpressions o} «

wilz, dr) = S, Adqdasy - 0 -, a)de

of the forms w; in terms of the eqordinates =.

Let us observe first that the’mapping (z1, - * *, Za) —exp X
is an analytic mapping @%\t‘hé whole of B* into §. We may denote
this mapping by the nbfation “exp.”” The forms ZA;{x)dz; are the
forms (3§ explw. IQt.\'f'oilows that the functions A;(zy, * - -, @) are
defined and analyficdover the whole of A%

To every pelément Xeg there corresponds an analytic homo-
morphism Qx\\of the additive group R of real numbers into G, and
§6 xeo; is anahalytic Pfaffian form on B.  We denote by ¢ the coordinate
on £, gnd’ by L the left-invariant infinitesimal transformation of A
deﬁh@di’" by L() = 1. Then d8x(L) = Xoyw, whence {80 xw) L
= w(X) = @ if X = Za.X; 1t follows that

8O0 x; = (L;di

Let 85 be the mapping, ¢ — {a:f, - = * » a,t) of R into E*. We have
0x(f) = exp O1(t), whence
505 (i, d)) = adl,
1 Cf. Chapter IV, §VIIL, p. 115,
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which gives the formula

Zf’j,l.fi.‘_;(alt, A ,a,.t)a;a'.t = a,-dt
or
(1) Zidg(edd, - - ) Tal) Ty = 2 @=1,---,n).
We now introduce the mapping, (¢, 2], *+ * + , a3} — (fz}, - - -, iz})

of B"into B~ Under this mapping, there corresponds to efx, dx)
an analytic Pfaffian form wi{z’, ¢, ds’, df) on B™* whose expresgion is

wi{e!, t, da’, dt) = Z;Au(alt, - -, w4+t dE
= tE_ngj(;B'f, A 3)d$ + x,dt
(making use of formulas {1)). <"’“
Since doy = (§)2: 05000 O o), we also h&\r(, derl® (3) S iCimw; O w}.
In order to abbreviate, we set Ag(zlt, - - -uint) = Ay(x't); then we
have N

dw;, = ZiAn{z'Hdt 0 dx] + E;t — (x t)}it Odz, + dz o dl + -

Eijct'ﬂ;w; O w: = E-.a'_,'jic,:jkAgg(I’f)I,—d:{:;. “dt -I— E.gi,ltﬂ,'jk;iﬂ(x ﬂ).’ﬂ:dﬁ [m] d;]ji
+ o

N $
N3

where the terms which aresnbt written do not contain df. Therefore
the identification of thg‘terms which contain dt gives

St
Akl(xft) +Q&% = E Eg,-c‘:,-k(ﬁiﬂ(x’t)x: ad A,;(x'i):n:) —’r* 5,@

. \ ¢/
or, §10Ce Gk & — Ciiky
{
\&

a
O\ o ARED) = u + Syeusl(tAn(a)

TN,
NS

‘..\’, .
~\JLet us consider =z}, - - -, z, as fixed quantitics, We denote the

matrix (L4 n(zt)) by @(1), and we denote the matrix whose coefficient
in the k-th row and j-th column is Szl by /. Then we have

de

P =E+d'a

where E 13 the unit matrix. Moreover, we have @(0) = 0.
By th'e same argument which was used to prove the convergence
of the series which represents the exponential of & matrix (cf. Chapter L,
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§11, p. B), we see that the series

™
Pt — qtm—1
m!

converges uniformly for { in any bounded interval. If @'(2) 1s its sum,

aa (1
we bhave, @’(0) = 0, di() = E 4+ a'®’; therefore @'{(¢) = &{1).
Putting ¢ = I, we obtain the following result:
Proposition 1. Let G be an analytic group, and let {X\, - - -+, &%
be a base for ts Lie algebra. Lef {xy, -+« , z.] be the Co-:'r(-.'sgm\ri,dfng
canonical system of coordinates, and lel wi, wy, -+ + , wa be !h{j‘m‘ms of

_?'I-Iau?‘e? Cartan defined by the formules wilX;) = by If~ e, dx)
= Z? Audr; is the expression of w in terms of the ro&rr!‘znahs x. the

maim;r @ = (A} {5 given by the formula \\
1 v
@ =3r—xt N\
ml INY

7
"

where % is the mairiz whose {k, j)- coefﬁca’vm 7§ Zitijpdi

Remark 1. The series which gives Mhe matrix @ converges for all
real or complex values of the numjmls Ty, € and the convergence ig
uniform for |z, |cqx| restricted tovany bounded region.

1t follows in particular | that the functions Aylzy, © -, T.) can
be extended to integral Ilr}qnog,emc functions of the complex variables
T, ot )

Lne ¢ N/
Remark 2. If We\%\et X = Zx,X;, we have
{XJI Xl = —"tcjlkx Xk = E'C;‘,‘,{:L' 'XL

The mappir 1g,\}7 — 1Y, X] is a linear mapping of g into itsell, Making
use of Lhe\ yase { X1, + - -, X}, we may represcnt this mapping by a
matrix ;md we see that thl‘-s matrix is —'% where *X is the transpose of

x, (N
Y Fxamrre, Lot us consider the Lie algebra of order 3 with the law

of eomposition defined by
(1) [X; Xl =0, [X5 X=Xy, [XoX]=0.

Tlere the matrix € is
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whence %? = 0, and

(1 (B)s —(%)mz)
ea=[0 1 0
0 o0 1

We have o, = de; - ($wadrs — ($)zadrs, we = dits, w3 = ds. The
equations of Maurer-Cartan are

dey -+ Bzed; — (Baadzs = dyy + Syedys — $ysdye,

dzz = dys ~
dzry = dys, .
and the law of composition in the group is therefore & \J

zfor) = a1(r) + @) (@alo)zs(r) — xa(ﬂ)xz(f))y
#o{or) = 22{0) + 2:(7), \
x3{or) = slo) + asl7). ~,'\‘

It is easy to verify directly that these formuladefine a group whose
manifold is % This proves the existence of\ah analytic group whose
Lie algebra is the algebra defined by formutas (1).

§VI. ORIENTED (MANIFOLDS

Let € be a vector space of dllmensmn n over the field B of real
numbers. We know that the Space H, of alternate n-linear funetions
on £ is of dimension 1 over B If B and B’ are two elements of this
space, with B 7 0, B" %0, we have B’ = aB, a being a real number
# 0. It follows that €he elements B 5< 0 in §, fall into two classes,
defined in the fnlloﬁq}lg ways: B, and B’ = aB, belong to the same
class if o > 0, tg'epposite classes if ¢ < 0.

The" complegiotion formed by giving € and one of these two classes
is called amleriented vector space. The n-linear functions of the class
which hel been selected will be called the positive n-linear functiohs
on the\c}nented vector space.

Let (Ly, - , L) be an element of the product @&* = ¢ X € X -
M (1. e, 2 mapping of the set {1, - - + | »n} into ®). If the set
\lLl, + +, La} is a base of € we shall say that the finite sequence
Ly, = - 0, Ln) 18 an ordered base; every base is thus represented in »!

different ways as the set of eloments of an ordered base.

If B is an element = 0 in $,, and if (Ly, + + -, L,) is an ordered
base, we have B{(l,, - -, L,) &£ 0. The latter number may be
positive or negative; but, if B = aB (a > 0) is an element of .
belenging to the same class as B, B/(Ly, - - -, Ly) will have the same
sign as B(L,, - -+, L),
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By an oriented vector space € we mean a pair § = (¥, 8 formed by
a vector space & over the field of real numbers and by one of the classes,
R, of non vanishing n-lincar forms on 8 (where » = dim &). The space
¥ is ealled the underlying vector space of & The »-linear functions
belonging to & are called the positive n-linear functions on & An
ordered base (Ly, + + +, L,) of ¥ is called an ordered base of € if and
only if we have B(L,, - - -, L) > 0 for every BzR.

A given vector space ¥ over the field of real numbers is the under-
Iying vector space of exactly two oviented vector spaces ¥; and &
We shall say that &, and &, are oppositely oriented, 1 (L1, - - -, B
is an oriented base of ¢, the same is true of every oriented base nf ¢
which is deduced from (I, - L.} by an even permutation of the
basic elements; if, on the contrarv, we perform an odd permutatmu on
Ly >+ -, Ly, thcn we obtain an oriented base of .. "~,

Now, let U be a manifold of dimension n. If p, 4&.\& point of U we
shall denote by &, the tangent space to U at p.  Sippose that we have
given a law which assigns to cvery point pe, ONg; say &,, of the two
oriented vector spaces which admit &, agd{their underlying vector
space. Assume furthermore that the following condition is satisfied:
¢ being any continuous differential forrrr ‘of order moon U, il ¢, is a
positive n-linear function on &,, 111etr W, 18 also positive on €, for all
points g of some neighbourhood of‘p Then we shall say that the pair
formed by the manifold U and m ‘the law p — &, is an oriented mani-
fold of dimension n. The méwifold U is called the underiying manifold
of the oriented manifold:{ The oriented vector space €, is called the
oreented langent space, t6he oriented manifold at the point. p.

Let U be an orjghted manifold, and let U be the underlying mani-
fold of 0. By au*érdered system of coordinates at a point p of ©
we understand é”ﬁmte sequence {z1, - - * , %) of functions such that
the set {x 1\\”\ , .} i3 & system of coordinates at p.  If the n-linear
form dzy'Q - Odz, is positive on the oriented tangent space to
T at p,\t-h(.,ﬂ we gay that (xl, - - -, r,) is an ordered system of coordi-

teghat p on U. If this is the cuse, (21, - - - , ) is also an ordered
s;rktem of coordinates on T at every point of some neighbourhood of p.

Not every manifold is the underlying manifold of an oriented mani-
fold; for instance, it can be shown that the projective plane is not. A
mamfold which is the underlying manifold of some orientable manifold
is said to be orientable. To orient the manifold is to make choice of
one of the oriented manifolds of which it is the underlying manifold.

Let ¥ be an oriented manifold, and dcnote by &, the omented
tangent space to U at a point pg0. Let also i be the oriented vector
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gpace oppositely oriented to ¢,; then it is clear that the P}J:i r formed by
the underlying manifold U of T and by the law p — 53: ig again an
oriented manifold U*; we shall say that T and T* are oppositely
oriented. 'The oriented manifolds ¥ and T* are the only ones which
admit U as underlying manifold. In fact, let & be any oriented
manifold which admits U as its underlying manifold. Denote by E
the set of points ¢geU such that &, is the oriented tangent space to W
atq. If gzE, let (x5, + + , x.) be an ordered system of coordinates on
U at g; then (2, -+ - -, 2,) is also an ordered system of coordinafés on
both U and ¥ at every point of some neighbourhood of g, frem.which
it follows immediately that E is open. Similarly, let K* he the set of
points reU such that the oriented tangent space to W at ‘wis Qf; then
the same argument shows that B* is open. Since V_i§ the union of K
and E* and F /N E* = ¢, it follows from the gonhectedness of U
that one of the sets E, £* coincides with U, whiehProves our assertion.

The underlying manifold of an analylic group G s always orientable.
In fact, let wy, - -+, wa be n linearly indépetident forms of Maurer-
Cartan on § (where n = dim §). Therwy 0 « + - 0w, is a differen-
tial form of order » on G which is coilinuous and everywhere = 0.
ilence we may orient G by the ;‘p(juirement that this form shall be
everywhere positive. N

Let € and 0 be two oriented vector spaces, of dimensions m and n
respectively and let £ and IR be the underlying vector spaces of ¥ and
] respectively. Let }?bc a posjtivc m-linear form on ¢ and let C
be a positive n—line%'\form on M. Then BC is an (m + n)-lincar
form on € X M afd i¥ = 0; we may orient € X I by requiring that
BC shall be pogi\tive. It is casy to see that the orientation obtained
in this way debénds only upon € and I, not on the choices of B and ¢
The orienj:e',gi space obtained in this manner is called the product
of the Qr@t-ed vector spaces £ and M; it is denoted by € X 9k,

Now} let T and W be two oriented manifolds; we dentte by €,
the‘ortented tangent space to U at a point peT and by M, the oriented
“angent space to W at a point geW. Let 0 and W be the underlying
manifolds of T and W; we know that the tangent space at (p, ¢) to
U X W may be identified with the produet of the tangent spaces to
UV at p and to W at ¢ It is easy to see that the manifold © X W,
together with the law (p, ¢) > &, X M., gives rise to an oriented
manifold.  We shall denote this oriented manifold by 0 x 4%, and
we shall eall it the product of the oriented manifolds T and s¢. Denote
by &: and &, the projections of U X W onto U and W respectively.
Let (21, - + -, 2) be an ordered system of coordinates at p on T
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and let (1, * * + , y.) be an ordered system of coordinates at g on W;
then it iy easy to see that (2101, - -+, 2n 0@y, ¥1Q G, + * »
Y= O @) is an ordered system of eoordinates at (p, ¢) on T X W,

1

§VII. INTEGRATION OF DIFFERENTIAL FORMS

Let T be an oricnted manifold of dimension », and let ¢* be =
differcntial form of order n on V. We wish to show how ¢® may be
used as an clement of integral on U.

We shall say that a subset ¥ of C is a eubie set if it iz 8 ecuhie neighs,
bourhood of some point p with respect to a coordinate system at
We shall say that a real valued function f, defined on U, hag ke
property P if f is continuous and if there exisis a re Iatn(I} (=0311pa('t

cubie ret ¥ ooutside of which f equals 0. "\
Let f be such a function. We can find a point PoN Sandordered
coordinate system. {x,, < -+, 2,) at pron U, andacubmnélghhourhood

V of po with respect to this system such that fNis, gero cutside V.
Let @ be the breadth of V, and let € be the cube{in’R" defined by the
inequalities |v; — z:(pe)|] < a. If peV, we mag Write
f@) = ), - - - CEp))
of = Flmm), + + + , el 0 - -+ 0 (das,
wheve f*(xy, - -« ,xa), Flzy, © = ¢ ¢an) are continuous funetions on Q.

Moreover, the fun(,mon ftF iz bo‘unded on @ and approaches ¢ when
{1, - + + , z.) approaches thc\boundarv of @. Hence the integral

(1} I = Jof*(x, - \\, :r,.)F(:cl, s Baidxy - - day

is defined. We shall{prove that the value of this integral does not

depend on the choi*oe of po, 1, ' * *, %, V. Let p, be another
point of U, (:v ¥, 7i) an ordored coordinate system at pg on U,

and V' a cubie, nclghbnurhood of p, with respect to this system, such
that f is alst)'}ero outside ¥7. We denote by @ the cube of R* defined
by the, J{mrjuahtles lz) — zl(ph)| < &, where o’ is the breadth of V7,
an(\mg 'must prove the equality,

@ Tof*s o @Gy, o, zn o dn ,
) L e SR, - e da,

where f*' and F’ are defined by the formulas

PEE L =i
P, SN 0 B ), = 4

(for peV’). The function f is zero outside VY, Let U, U' be
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the images of ¥V /™ ¥’ under the mappings, » — {@:(p), - - -, z.(p)),
and p — (zi(p), * + +, z.(p)); U and U’ arc open subsets of @, @’
reapectively, and the integrals which oceur in the formula to be
proved do not change if we restriet the domains of integration to {7
U’ instead of @, @',

1If peV /> V| the a’-coordinates, zi(p), * * - , z.{p) of p may be
exprossed as functions, g (2 {(p), + * +, zdp)), * = -, glealp), -+ -,
za{p)), of the s-coordinates of p; the functions gy (xy, + * - , ), * *
ga{x1, »  + | ) are defined and analytic on U, and the mafiping,
(r, = -,z = qlay 2 0 &), galzs, * * 1, Talaauaps U
topologically into U/, We set \\ D
D(gl; . qva) .‘. hd
D(xls Ty xﬂ)
whence m\

(el 0 = -+ O (de), R
= Diau(p), - - - z;@?mdxl)p Q- om (),

Since (zy, * + -+, xa) and (x}, + - ¢, ,;) Are ordered coordinate systems
on the oriented manifold U, we have ¥

s

D(:EI: to ,.’Ilﬂ) >.'Q" if (IL‘;, e )xn)eU'

D(xl, o ,.',Cn) =

Moreover, we have 4

AN

Flzy, » - - 3 g i:';F!(gl(x): t }gﬂ(a:))D(xl: T, Ta),

and Ky\
) = @, - g,

Therefore foim‘uh (2) follows at once from the classical formula for
(:hangil%"bmdumtes in multiple integrals.

It follows that the number I defined in formula (1) depends only
on f and ¢*. We shall set
) Jofem = I,

xmd this formula defines the integration of functions J which have
property P.
The following properties are obvious from our definition:

_(1) If the continuous functions f1 and 7, are zero outside the same
eubie get V, we have

Felayfi + asfa) o = afvfie" + asfyfop®

(where a1 and a; are any real numbers).
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{2) H f has property P, and g is any continuous funetion, then the
function gf has property £.

Now we shall extend the definition of our integration process to a
larger class of functions. A continuous function f is said to be zero at
infindly if it can be reprosented as a ﬁnite sum of functions hav ing
property P.  We asscrt that if f = f, + -t fHandf=f +
+ fi arve two representations of this kmd we have

(B) Juofiem + Jufeem + 0 - [ufad” = [ifie" + Jofie” + -
¥ hf’ ™

We shall need the following lemma:

Lemma 1.' Let F be a relatively compact subsel of T. Thp(.o mm!s
o continuous function p, which is zero at infinity and equal 1o, Ivon K.

T.et E be the adherence of E in U; then E is a compéu,t‘ set. We
select at every point peE a (,oordmate system {:rl,p, £, Taypt and
a cubie neighbourhood ¥, of p with respect to thigs¥sbem. We define
the function u, by the formulas

~N
rall) = 1 — max; {a;'wi,(g) — 2i0(p),} AT,
uplg) = 2 \if gdoesnot belongto V,,

whore a, denotes the breadth of V. ’Each funetion u, is continuous,
Since K is compact, it can be coveredlﬂ 4 finite number of the sets ¥V,
say Vyp, +++, Voo The funct:ron =*u,. is # 0 everywhere on E;
therefore it has a minimumy, m > 0, on E. We sct s(g) = max
im, Ziup); the functlon s'(‘g) iz continuous, everywhere 2 m, and

equal to B, on E.\The function g = 2’1‘—8" obviously has the

required propertle& )

Now we canyprove formula (3). Let E be the sct of points at
which oneaf_least of the functions fy, -+, fu, fi, * * * . fu Is # 0;
obv 10ualy~'E is relatively compact, and therefore we may apply our
lemma tO'E Let g = Z*g; be a continuous funetion which equaulb 1

'E paoh funetion g, having property P. We have fg, = fugs +
—E— G = flg: + - - - + figs; for fixed 7 the functions figs, - -, fugi
are all equal to zero outside the same relatively compact cubic set.

Hence we have
(4) S i Jofagie™ = st Jufagie”

On the other hand, the functions fegy, * * ° ,fo',g;,-, for a fixed, are
also all zero outside the same eubic set, and their sum is fug =7 ..

 Thig lemma is due to Diendonnd,
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whence
Jefue™ = Z4vfogie®

and we have a similar formula for the functions f°. Therefore we
obtain formula (3) by adding the & formulas (4).

We may now define the integral [yfe” of & function f which is zcro
at infinity as the common value of all expressions Z.[ufae?, for all
representations of f as a finife sum of functions with property P.

If fi, f» are funetions which are zero at Infinity, the funct.iqgs a1 J1
4 azfs is also zero at infinity, and we have .

(5) Julefr + aofse” = arfufie™ + az[vfae®, ( )

If the differential form ¢* is everyvwhere positiye};;ﬁ the oricnted
manifold U, we may assert that the integral (\\rij;l’,r}l'esi}ect to o*) of a
non negative continuous function f, null at_infihity, is non negative,
and is even positive unless f is identically 2gudl to 0. In fact, it is
clearly sufficient, o prove these assertiopgér & function f which has
the property P; in this case, cur assertighdfollow immediately from the
definition if we obscrve that the funghion denoted by Fin (1) is positive.

Let {g») be a sequence of co,lglt.iﬁuous funetions on U which con-
verges uniformly to a function @y then we have, for any continuous f
null at infinity, ON

lim, S fogafer = [vafe”

This is proved hy deeowiposing f into a sum of functions having the
property P and o sﬁ}’ving thal our formula follows immediately from
the definition iffhas the property £.

Remark. (A continuous function is zero at infinity +f and only if
it is zero ?J«féﬁfde some compact subset of V.

TheMénly if” is trivial. Conversely, if f is zero outside the com-
pact\s}{t E, there exists (by the lemma) a function g = S%g;, which is
equal*to 1 on K, the functions g: having property P. We have f =

. Z;;fg‘s, which shows that f is zero at infinity.
\ ) In particular, every continuous function on a compact manifold is
zere at infinity.

Effect of an analytic isomorphism

Let U, ‘W be oriented manifolds, and let ® be an analytic iso-
morphism of the underlying manifold of U with the underlying
manifold of W. TLet n be the common dimension of U, W. If Y
is a differential form of order n on W, () is a differential form
of order n on V; if p is & point of U such that (¥*)ap 5= 0, we have
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(8®(¥™)), # 0. But, if (Y}s, is positive on W, (3&(Y™)), may be
either positive or negative on . If for any point p and for any ¢~
such that' ($™)a, £ 0, the form (3B(¢¥™)), has the same sign as e,
wi shall say thal & preserves the orientation.

An equivalent {ormulation of this condition iz the following: if
the functions (y5, - -, #.) form an ordered coordinate system at
®(p} on W, the functions [y o, - - -, 3y, 0®} form an ordered
coordinate system at p on T,

Tet ® be an orientation preserving analytie lsomorphism of ¢
with 49, ¢¥* & continucus differential form of order # on W, and 'fa
continuous funetion, zero at infinity on V. Sinee ®is 4 homeom@{)h-

ism, it follows immediately from the remark made above that fod
is zero at infinity on W. We assert that we have the forrimla

-1 #*¢
(6) J-Lf(SqP(gf/“) = J-w(fo il )x{/" ’\

It is obvicusly sufficient to prove this formpi@;in the case where f
is zero outside some relatively compact cubiééset, V, of T. In this
cage we can find a point pEV and ansdtdered coordinate system,

(x4, * * -, Toy at pp on U such that VJ‘: & cubic neighbourhood of py,
gay of br(‘adth a. ~j~
L QY -
Bince & preserves omentahon,ihe functions y; = 2, 0 &, .,

-1

Yo = T, 0 & form an ordgred coordinate system at $(py) on W.
Moreover, the set ®(V), xs}he cubic neighbourheod of breadth a of
®(p,) with respect to Lh\;\systom

We can express ¢ in ®(V) by the formula

(P =if@1((}_'): cc L yalg)Mdy), B 0 B (dya) e

On the othwhip‘nd, we have, for peV, f(p) = f*(au(p), -~ -+, 2a(0)).

We ham\ )

(BCP‘('# e = Flzp), -+, zelp)(de)s 0 - - 0 (dwa)y

\ {fo @39 Fnde), - - yala))
Tt follows immediately that the ordinary multiple integrals which
give (by definition) the values of the two gides of (6} arec really the
same integral, which proves formula (6).
Integration on the product of two manifolds

Now let U and W be oriented manifolds of dimensions m and n
respectively. We suppose that there are given an m-lincar differential
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form ¢™ on U and an n-linear differcntial form ¥ on °¥. We form the
product © X W, and denote by @1, @ the projections of © X W onto
%), W respectively. Then éa1(¢™) and dag(y™) are differential forms
on UV X W; hence d&(¢™) D daa(y) is a differential form of order
m 4 non0 X W. We shall denote it simply by ¢™m.  If ¢™ and ¢
are continuous, o is g™

Let f = f(p, g) be a continuous function which is zero at infinity
on U X W. Then, for each fixed ¢, the function f.(p) = f(p, ¢,
considered as a funetion on U, is zero at Infinity. In fach, 4 €' is a
compact subset of U X W such that f = 0 outside €, & (Cyis com-
pact, and, for every q=W, f, is zero outside a(C). Weashall prove
moreover that O

@ Tuxofemd® = [w(lvfoe™ "D"‘ D

N
(we obscrve that [yfee™ = 0 if g does not bel'c'irﬁ to a@2{C)).

The sets ¥ X W, where V, W are relatively compact cubic sub-
sets of U, ‘W are open in U X W. Th@argument used in the proof
of the carlier lemma showe immediately that there is a continuous
function, g, equal to 1 on €, whidhyhay be cxpressed as a finite sum
=%g;, where cach ¢, is zero ouquiilc one of the sets V X W. Wc have
f = fg = =4g;, and thereforedit is sufficient to prove (7) under the
additional assumption thak f iz zero outside some set of the form
V X W, where V, W gte rclatively compact cubic subsets of U, W.

By assumption',iw?} dan find points peeV, g€ W and ordered coordi-

nate systems (2N, ), (Y1, * * ¢, Ya) b Do, go On T, W such that
V, W are cubit\ncighbourhoods of pe, go with respect to these systems.
If peVygeW, we have f(p, @) = f*(:(p), - - -, 2alp); (0 ©
ya(9)); 5= Flaa(p), -« ) Zalp))ldm)s O -+ - O (ditw)y and ¥,
= G%?&q), ce, ya(@)(dye D s O (dya)e I we set @) =%
O WINY; = ¥i © @, We have
¥ = Flalp), - - o wn(p)Gnle), - - - s (@) (d2)) (2,0
0 0 (de) e B @ 8 ¢ 0 0 B ({dr)es
Hence
Joxwfemd
= jQ’XQ”f(xl! L Ty Yttt YT, y ZR)G !y")
d:cl Lo dxmd-yl o dy'n

where €' is the subset of R™ defined by the incqualities |a; — 2:(po)!
< o, and Q" the subset of R defined by the inequalities ly; — y:(q0)]
< &', @’ and o' being the breadths of V, W,
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Therefore we have

Foxwfe™p
= IQ”(IQ’f(xIP Tt 3 Ty ?_JI: B ,yn)f"(h, -t ;xm}dl:ldﬂ:z ot d;r...}
G, - ya)dydy: - - 0 din

and this is exaetly the assertion of formula (7).

§VIII, INVARIANT INTEGRATION ON A GROUP

Let ® be a Lie group, and let & be the component of the neutral,
element ¢ in ®. Then ®, is the underlying topological group of ad
analytic group Gn. We bave already observed that the underlfing
manifold G, of #n analytic group is always orientable. Il w1, o S
w, are # linearly independent forms of Maurer-Cartan, (n being the
dimension of §p), w1 Dw; O « + » Do, = @"isa continuous diffcrentisl
form of order r on G, which is everywhere = 0. ¥ é“/may orient
Go in such a way that ¢ is positive everywheressBhiis being done,
we have an integration process on Gy for the eontinuous functions
which are zero at infinity. O

Let oo be any element of Gy, and let @,n"be the corresponding left
transiation. Since 88,(¢”) = ¢", ®., dshan ofientation preserving
analytic isomorphism of G withvij:ééif. Therefore we have, by
formula (6), §VII, p. 161 ANV

N
[ede” ol 0 Ta)e"
which we may as well W'I‘i{‘({i’}'l the form

Ke Safor = [olJ © Boe”

In this formuls f Eep\*ésents any function which is zero at infinity on &,

Tt is easy td extend fhe definition of integration to functions which
are zero at\in nity on @ instead of Gl (ie. continuous functions,
zero outside ‘some compact subset of &). Let f be such a function.
In everi~vonnected component & of & we select a point g.; for each

@ (@@cﬁne a function f. on ®; by the formula
fule) = o) 7260

Fach function f. is zero af infinity on ®, Moreover, only a finite
number of thesc functions can be # 0. In fact, let € be a compact
subsot of & outside of which f is zero. Yince ® is a Lie group, Mg is
open 1 @ and the topological group ®/®, is discrete. The image of
¢ under the natural projection of ® onto ©/®, being a compact
subset of a discrete set, is a finite set, which shows that € meets at
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most a finite number of components of &, say Ga, G, - ¢, §,,.
If @ % ai, @y, * * -, &, the funetion f, is identically zero. The sum

Zﬂfﬁof“(pﬂ

thercfore has a meaning. We assert that its value is independent
of the choice of the elements ¢o. T.et &), be some other slement of B,
and let f, be the function defined by f.(r) = f(o’.r), (re®y). We have
Fu(7) = fuloT'olr). We set o7’ = ¢7'; this is an element of &5, and
we have Q)
Jodae® = Jg.fa © Bogre™ = [gfupm

which proves our assertion,
We can thercfore define the integral of f over 3 byr the formula

Jofor = Yafgfurm LY

This integration obviously has the propcr{ias expressed by formulas
(5) and (6) of §VII, p. 161. Morcover @’is any element of O, we
have ~\

N
2\
7\

Jofer = Qj{jté:qja)ioﬂ

where &, is the left t-ransla-tionj%iss"ociated with o. In fact, il we sct
g =f0®, we have g(r) = L07), ga(7) = floaor). Tf @ is the cosct
of gur modulo ®,, we have f@.or) = Jo(o5 0007) and o5 'ca0e®,, whenee
Jogae™ = [@.foe™ Sinées®s = ®ar, ©s tuns through the set of all
components when §‘ddes so, which proves our formula.

Finally, we obsewe that we have oriented Go in such a way that
¢" represents an.everywhere positive differential form. [t follows
that if the fungtion f is everywhere 2 0, we also have Jefer 2 0. It
is suﬁicicp\t?fod prove this for a function f which vanishes outside some
reIatiirpLY..compact cubic subset, V, of &), We can {ind a point pegV
and_ a}i\ordered coordinate system (xy, + + - | x.) at P on &g such
thatiV is a eubic neighbourhood of Do with respeet to this system. Tf

“we‘have, for peV,

N\
(ﬁan)p = F(Rfl(}’?): Tty xﬂ(p))(dxl)p O-«--0 (dxn)m

the positiveness of ¢ implies that Flzy, + - - x,) is a positive func-
tion. Hence the formula which defines J& o™ in this case shows
immediately that the integral is > 0 if fis 2 0. Moreover, if f is
everywhere 2 0 and somewhere == () we have

Jefer > 0.
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A convention of notation

When some left-invariant differential form ¢ of order n has
been selected, and is thereafter kept fixed, the integral [mfe* is often
denocted by [@f(r)dr, where the symbol 7 of the variable of integration
may be changed, as usval, provided there is no conflict with the rest
of the notaticn.

With this notation the invariant character of the integration is
expressed by the formula

Jef@)dr = [eflor)dr A

where ¢ 15 any element of @&, O

Effect of the right-translations .¢

Let a5 be a fixed element in &, We considepmﬁr?st the mapping
r—agrog! = O,(r) of ® into itscll. This Xapping induces an
analytical isomorphism of the analytic group g with itself. There-
fore 89.,(¢") is again a left-invariant differéntial form of order n.  As
such, it can be written in the form c(gn”, where e(ro) is a constant
depending on o5 Therefore, if f is\ any function which is zero at
infinity on &, we have SN

N

—1 \
Je(fo aR)e” = cloatfafe”
or ™

M [ 7 ro)dr = clan)] "

Bince O, = G4, Oﬁb\we have clowi) = elea)e(or). On the other
hand, it is quitergasy to sce that the funetion e(mg) of @ is analytic
at the neutral‘elément, and in particular is continuous. Since the
mapping a:g,\'—’;—).\(;(an) is a homomorphism of @ into the multiplicative
group of-réal numbers, it is everywhere continuous.

Fazmula (1), ecombined with the left-invariance of our integration
g{qcéés: gives

® [isfradr = cloo) fof(r)dr

The case of a compact group
If ® is compact, the constant 1 can be integrated over ® with re-
gpect to any left-invariant differential form of order n, and ¢ = @l - e"
is a positive constant. Replacing ¢" by ¢~ g7, we sce that it is always
possible to normalize our integration process in such a way that

I@l-da= 1.
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We shall always assume that this has been done when we deal with
integration on a compact group.

If we apply (2) with f = 1, we find ¢(so} = 1: the left-invariant
integmmon on a compact growp is also right-invariant.

Let ¢>p be the right-translation corresponding to an element pg@®.
Since ¢p commutes with any left-translation, quSP = is again a left-
invariant form; the 1ntegratmn process defined by ¢" being right-
invariant, we must have éqb,, n = oo itsell is right-invariant,

Now let J be the mapping ¢ — o= of ® into itself; 8J¢" igaright-

invariant differential form of order », whence 8J¢" = F”oﬁ"; with %
constant. Since [@l - §Je" = [@l-¢* = 1 we have R, \e Ay 8o =
¢", which gives the formula " QO
fofleds = [gfla)do. N
R&
‘\\’}
X7
“‘..}\
N
R (
\'\\.x
::\»I
G
N



CHAPTER VI
Compact Lie Groups and Their
Representations

Summary. The chapter begins with an exposition of the simplest features
of the general theory of representations. In order to be able later to apply
notions and results in the theory of representations of Lie algebrag, we intro®\
duce the general idea of an ‘' S-module,” where S is any set whatsoever.  'We
interrupt the exposition in §11 in order to prove as soon as possible the esskntial
fact that every representation of a compact Lie group is semi-simplery

In §§VII, VIII, IX, we develop the idess which center around van Kampen’s
and Tannaka's theorems, The main emphasis is placed on the copstruction
of the complex Lie group which corresponds to a given compaet Lic group.
It follows from Tannaka’s theorem that a compact Lig group & may be
defined as the group of the “pepresentations’ of the seb 92°0f representations
of &; we obtain the corresponding complex Lie group by dropping cne of the
conditions which were included by Tannaka in t]Q’ fdtion of “representation
of ®,” viz. the one which refers to imaginaty) conjugate representations,
Our method shows in a patursl way the fagh that the associated complex
group is topologically equivalent to the, product of ¢ and a cartesian space;
this is a particular ease of a theorem of Cartan.

Tn §XI, we give the proof of the fathous Peter-Weyl theorem. In §8XII,
XIII we are concerned with spmed simple applications of the Peter-Weyl
theorem. \

GENERAL NOTIONS

Let S be an arbitrary sct of elements. By an S-module on & ﬁeld. K
we mean a pair (BP) formed by a vector gpace P of finite dimet}smn
over K and a/fipping P which asgigng to every element 065 & hlm.aar
endomorphism P(e) of P. It follows that an S-module is an additive
group ‘\j\-"iﬂ} two domains of operators, one being the field K and the
Other.gﬁé being the set S. _ o

“Two S-modules (B, P) and (', P’) are said to be isomorphie if th’ere
exivls a linear isomorphism I of B with P’ such that I © P(c} = P'(0)
o I for every oES. ‘

In particular, we ghall bave to consider the cage where 8 is the
set of elements of & group @. We denote by ¢ the neutral element of
G. An S-module (§, P) is called 2 representation space of G if the
following conditions are catisfied: 1) P{e) —.-'P(g) o P(r) for any
elements o, 7 of G; 2) P(e) is the identity mapping of . It follows
immediately that P(¢c—1) is then the reciprocal mapping of P(e). If

171
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(B, P) is a representation space of the group G, the mapping P is
called a representation of G. The dimension of P is called the degree
of P.

Remark. The correct notation for an S~-module or a representation
space Is the notation (B, P). However, we shall often use the symbol
P alone to indicate the S-module (or representalion spacc); this
notation should be considercd as an abbreviation of the completo
notation, and should be avoided when there is danger of confusion.

Let (B, P) be a representation space of a group G.  If we galect a

buse {er, * - -, es} in P, we may represent cach linear endamorphism
P(o) (for ce@) by a matrix P(e) = (z4), of degree 4, “-'lmfsf\ao\}fﬁcients
are given by the lormulas .\

Plo)e: = 150 \:

We have Plor) = Bo)P(r), B(e) = E (the unib-pehtrix),

Conversely, any mapping P of @ into theset of matrices of degree
d with coeflicients in K is called 2 repq’as}ntation {of degree d) of @
provided the conditions P{sr) = PP}, Ple) = E are satisfied. If
we wish to distinguish betwcen' ‘Yeépresentations by lincar endo-
morphisms  and represeutationg’jby mafrices, we shall speak of
abstract representations in theSfhst case, of matricial representalions
in the second case. If thesmatricial representation P is derived from
the abstract representatiéh P by seleetin g & bage In the Tepresentation
spuace of P, we shall sa,'_?}that P is a matricial Jorm of P and that Pis an
abstract form of P, %Elearly, any matricial representation has at least
one abstract forth, and every abstract representation of degree > 0
has at least .oné’ matricial form.

Two absbedct representations Py, Py of a group G are said to be
egm'mbﬁﬁf their representation spaces are isomorphic. Two matricial
repregéutations Py, Py of @ are said to be equivalent if there exists a
regilar matrix vy such that

N\

\m‘: P.(o) = vPile)yt

holds for every ¢2G (thig implies that P, and B, have the same degrec).
The following statements are casy to prove: if the matricial representa-
tions P,, P, are equivalent, they have a common abstract form and
every abstract form of P is equivalent to every ahstract form of P;
if Py and P, are equivalent abstract representations of G of positive
degree, then any matricial form of P\ is equivalent with any matrieial
form of P..
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Let (B, P) be any S-module. A vector siuhspace O of T is said to
be fnvariant (with vespect to P) if we have Ple) (£ for every ogS.
This being the case, the contraction Pi(s) of P(o) to O is a linear endo-
merphism of £ ; the pair (), Py) iz an S-maodule, which is ealled a sub-
module of (B, P}). Moreover, if e iz an arbitrary veetor in R, the
residuc class modulo Q of P(o)e depends only upon the residue cluss
e* of e. If we denote the residue class of Plole by A(s)e*, then
Afe) ig a linear endomorphism of B/Q, and the pair (B2, A) is an
S-module. If P is a representation space of group &, and i £ I8 ans
invariant subspace, (B, P1) and (B/, A) are also representation spaces
of ¢ ¢\

Let £2 be an invariant subspace of an S-module (%, P} of p:bsit-ive
dimension. We may select a base (er, - -+ +, e in Tssueh that
the elements e, - -+ , e, form a base of Q. If ¢€S, the gnittiix which
represents Pls) with respect to the basc ey, - - -, ed'b@s\the form

_ (Pl N@ o
P(a)~( 0 a0

where P.(¢) and A(s) are squarc ma,t,riéeé of degrees r and 4 — r
respectively and where N(s) is a regt@ngular {r, ¢ — r)-matrix. The
matrix Py(o) represents the contrgct:ibn of Py to £ (with respeet to
the base {ei, + -+, €] in O); The matrix A{s) represents the endo-
morphizm of P,/ which cordésponds to P(e) (with respect to the base
of B0 formed by the regidue classes of ey, » © -, €ah

Now, let P, Q and ERBe tiwee invariant subspaces of some S-module,
We have the following ?homomorphism theorems,” due to Fr. Noether:

LIfR CQ ;C\ﬂé, Q /R is an tneariant subspace of B/N, and B/Q
15 isomorphic a{@;f?}t)f(@/m). o

II. Thepates B +Q and POQ are invariant, and T + Q0 s
isomorphigde B/ P .

Moreover, the isomorpbisms whose existence is asserted are
“ngtiwral isomorphisms”; ie. they ean be defined without reference
eithéf Lo the seft S or to the mapping of S in the set of endomorphisms
of the 8-module under consideration.

For the proof of these facts, we refer the reader to van der Waerden,
Moderne Algebra, T, Chap. VI, p. 148. _ )

Definition 1. An S-module B is said to be simple if 1t is of dimension
> 0 and ¥f the enly invariant subspaces of R are {0} an,d B. ‘

This definition ineludes in particular the definition of a smlpl.e
representation space of a group . Such a representation space 1s
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also very often called drreductble. The corresponding representation
of G is also said to be sinple or irreducible. A matricial representation
of a group @ is said to be simple or irreducible if an abstract form of it
is simple.

Definition 2. An S-module is called semi-simple if it can be repre-
sented as a sum of stmple sub-modules.

Remark 1. The sum of a collection {{,} of subspaces of a vector
space 18 the set of vectors of the form Z.e,, with €.6Q., only a finite
number of the vectors e, being == 0. Tt is clear that a sum of im@riant
subspaces of an S-module is an invariant subspace.

Remark 2. An S-module of dimension 0 will be considered as
semi-simple; such a module can be considered as the sutyof an empty
collection of sub-modules. N\

Proposition 1. A semi-simple S-module B caw: be represented as
the direct sum B = Z} Qs of a finite colleclipin® = Q] of simple
sub-modules.  Moreover, if we have a represenladion of this kind, and if
L is any invariant subspace of B, then thergpaists a sub-collection @y of &
such that P is the direct sum of QO and{éﬁthe sum of the sub-modules
belonging to @,. A/

By assumption, $ is the sum’ef’ vome (finite or infinite) collection
¥ of simple sub-modules. V‘i{e?t'éf-ke a base of P, and we represent
every element of this base ag & sum of vectors belonging to the sub-
modules of the collection ¥Nn this way, we see that P can certainly be
ropresented as the suni\of some finite collection ¥, of simple sub-
modules. Among a,llifimtc subcolleetions of ¥ which have the property
that the sum of thék\terms 1s B, we select one, say ®, with the smallest
possible number Jof clements. TLet £, « - - , X boe the distinet
clements of % We have B = =2 Q; We assert that this sum is
dircet.  TiDRAGt, assume that we have a relation of the form f, + - « -
+ 6 =0) with fe, (1 < i< A). We have fie0, Qa4+ -
+ Qh\j\ Now, Q™ (Qs + -+ + 4 0y) is an invariant subspace of
Qapdf we had 0N (Qy + - -+ + 0, = 0, O, would be contained

Q@LQE T 0 and Qo 4+ - - - + O would be equal to B, in
contradiction with ocur choice of & Since O, is simple, we have
L1+ - - 4+ = {0}, £, = 0. In the same way, we see
that f; = 0 (1 € ¢ € k). Our asscrtion is thereby proved.

Now, let & be any invariant subspace of $. We consider those
subsets 7 of ® which have the property that P is the sum of Q and
of the sum of the modules of & (for instance & = @},  Among these
subsets, we select one, say &, with the smallest possible number of
elements. If Qg, - - - | QO are the elements of ®,, an argument
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entirely similar to the one used above shows that B is the dircet sum
of 2,80, -+ -, Q..

Proposition 2. Let P be an S-module which has the following
property: if X is any invariant subspace of B, there exists an invariant
subspace L such that P is the direct sum of T and Q. Then R s
semi-stmple.

Let P, be the sum of all simple sub-mddules of §. By assumption,
P is the direct sum of B, and of an other invariant subspace M. i
we had dim ® > 0, ® would contain some simple sub-module (fgn,
instance, an invariant subspace of M of smallest positive dimenston
would give a simple sub-module contained in M). But any &haple
sub-module is contained in P, and By W = {0} the tys.t‘\u\nption
dim # > 0 leads to a contradiction. It follows thata®t = |0},
P = Pu 0

Proposition 3. Let P=5,+ - - - 2, =£1;.2F}\' v 0 be
two representations of a semi-semple S-module PN@s o direct sum of
stmple S-modules. Then we have h = k' and tJQS}e"exists a permutalion
@ of the sef {1, - + - | k) such thot ;s a'so-mﬁ}gﬁhic 05,1 ¢ R

We shall construet the permutatiqntﬁ{. Suppose that &(z) 1s
already defined for 2 < & (where k S,j«:ﬁ) ‘and has the following prop-
erties: o) @(f) = aj) for 1 <j <?f, b} Qi Is isomorphie to £
(for7 < k); ¢) we have N

P = {‘-’;ﬂ‘a:a(i) + Zipl
We consider the invar’gﬁ\%«s’ubspace
~‘>Q - E;‘(&Q;m ‘l“ Ea’}k@i

By Prop-:)si’cint]\tiJ vthere exists an invariant subspace Q’ u_'hich is the
direct sum of-a(dertain number of the spaces Q; and which is such that
P is the di{o’ct’sum of & and Q.  Therefore Q' is isomorphic tol‘BJD,
Le. to Qi It follows that Q' is simple and therefore that £ iz one
ofﬂ!shé\',’mbdules Q), say Q' = Q. BSince O, (Q ford < i, we
h -V\e\:fo = (i) for i < k. We define (k) to be the number Jo. It is
clear that the function &(:), now defined for 7 <k + 1, satisties the
conditions ), b), ¢) above (with k replaced by & + 1).

Boeause we can define the univalent funetion @ on theset {1, - - -,
k}, we must have ' 2 k. Since the two decomposition:s' play symunet-
ric roles, we have also ' € h, whenee b = i’'. DProposition 4 is there-
by proved. o ‘

Now, let B be the represcntation space of & semi-simple represen-
tation P of a group @, and let A be any irreducible representation of .
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If we decompose P into & direet sum of simple subspaces, we may count
the number of these subspaces which yield representations which are
equivalent to the given representation A. It follows from Proposition
3 that this number is independent of the particular decomposition
of % which is used. The number in question is called the number of
times that the representation A is condained in the representation P.

Proposition 4. Lt (B, P) be a simple S-module over an algebraically
closed field K. Assume that all the endomorphisms P(o) (e€S) mudually
commute. Then B 4s of dimension L. O

In fact, let 5 be any element of S.  Since K is algebraically lozed,
there exists an clement 42K and a veetor e 5 0 in P suchthatP(s)e
= ye. Let £ be the set of vectors e satisfying this “condition.
It is clear that O is a vector subspace of §. Turthérmore, if o8,
ez, we have P(s)P(-)}e = P(r)P(c)e = uP(r)e, whentdP(r)esLt, which
means that ) is invariant. Sinee P is simple, ihfollows that & = B,
In other words, for every o&S, there exists an‘clement w(s)eK such
that P(s)e = ul(o)e for cvery egP. It fol oE immediately that any
vector subspacc of P is invariant. Sihcd B is simple, it coincides
with the subspace generated by anysector e » 0 in %, whence
dim P = L. N\

S§II. REPRESENTATIONS OF COMPACT LIE GROUPS

Let ® be a topologicdNgroup. By a (matricial) representation
of @ we mean a contimteus homomorphism of ® into either the group
GL{n; C) (*complex %presentation”)—or the group GL(n; RB) (“real
representation’’)»\/ _

Theorem LKN\‘Any real representotion of a compact Lie group 8
equivalent .tq';b"mpresentation by orthogonal mafrices. Any complex’
represenigiion is equivalent o a represenfation by unitary malrices,

Letus consider the ease of a eomplex representation P of a compact
Lie, gl"oﬁp . Weset

\V a(o) = Plo) - Plo)

The matrix «i{e) is always hermitian positive definite (ef. the proof
of Proposition 1, §V, Chapter 1, p. 14). The coefficients of ai(e)
arc continuous functions of ¢ on-®.

We shall now make use of the invariant process of integration on ®,
normalized as usual by the condition [gl - do = 1 (ef. §VIIE, Chapter
B, p. 167). Wosct

@] = f@)al(rr)da
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(i.e. the coefficients of &y are the integrals over  of the cocflivients of
ai(e)). Sinec we have fai(o) = aifo} for every o, we have also ‘ay
= @i a; I8 hermitian. ¥ a is any veetor in C* (where n is the degree
of our representation) we have

a-aa = fga- afclade

Qinee 1o} is positive for every o, we have a- aicla =z 0, whence
a-aa 2 0; this proves that e is positive, Sinee (s} is definite, we
have a * ax{o)a > 0 provided a = 0, whence a - wja > 0; we see that e
iz a hermitian positive definite matrix.

1f 7 is any fixed element in @, we have O
- - - = £ .\ ’
PPl = [aPEPPEPMs = [¢PEerPlords A
= [oPREEI s = o

in virtue of the invariant character of our int-egr&tiom}\

We have geen in the course of the proof of Dedposition 1, §V,
Chapter 1, p. 14 that a positive definite hempiﬁhri matrix o mayv be
written in the form e?, where a is also hel‘xm’ltian positive definite.
We sct P/(r) = aP(r)e Since fa@-osve’ = ay and ‘P(I)alp(v‘)
= o, it follows from an easy comput:atipri' that the matrix {{aP{rj&")
(aP(r)a?} is the unit matrix. Thiy eans that the reprosentation
aPa! ig unitary. 3 \

1f now P is a real represgatation, then e is a real matrix, and we
may assumec « to be realyIt follows that the matrices aP(r)a™ ore
real and unitary, i.e. or opronal, which completes the proof of Theorem
I. \

Corollary, Bty representalion of a compact Lie growp 1§ Semi-
simple, \ _ ]

By Theafam 1, we may limit ourselves to the conmdcratl‘on of a
matricialFapresentation P of cur compaet Lie group & by unitary or
orthogdhal matrices. _

”lil,.\ ithe complex case, we may consider that the representation
spagh is O~ Let P be any invariant subspace, and let B’ be the vector
subspace of C" composed of the vectors f such that e - f = 0 for all
egP. If feP’, we have

e-P(o)t = Ploe - =Pl e = 0
for all eeP and oc®. It follows that P’ is an invariant subspace of
C»,

We know that e-e = 0 implies € = 0 it follows that B g

= {0}.
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Let fer -+, e} be a base P. The vectors feP’ are those
whose components satisfy the d lincar homogeneous equations f- e;
=0 (1 € { € d); it follows that the dimension of B’ is at least n — d.
Since PR = {0}, the dimension of T + B’ is at least d + {n — d)
= n. Therefore, we have P + B’ = C» Corollary 1 then follows
from Proposition 2, §i, p. 171.

The argument would be entirely similar in the real case.

§I1I, OPERATIONS ON REPRESENTATIONS N\

1. The star representation i \\

Let ¢ be an endomorphism of a vector space B over affield K, and
let P be the dual space of B (i.e. the space of llnear fu;mtlons on P
with values in K). If A is any element of ¥/, we d(,ﬁne to(h) to be
the elecment of B’ which is defined by (‘go()\))(e}¥ Me) for every
ee$. It is clear that % is an endomorphistef ¥'. Moreover, if
w1 and ¢, are endomorphisms of P, we hay’g\ J

W1 O 2) = f@i'b}%

Lot fey, - -+, &3} be a base of E[}” There corresponds to this bane
a dual base {hy, - - -, A} of s13"'9,11ch that M{e,) = 8, (1 4,7 € d).
If o is the matrix whwh représents the endomorphism ¢ with respect
to the hase {ey, - - -, egf\then the matrix which represents fp with
respeet to the base {)\;{*-,\- -, ha} is the transpose 'a of a.

Now, let (B, P} l\é\a representation space of a group . The for-
mula Plor) = P\ Plo) shows that P is not in general a repre-
sentation of ®,®ut that the mapping ¢ — 'P(e?) is a representation.
If P is & matgioidl form of P, then the mapping o — (P(o))* is & matricial
form of ti®\¥eprosentation o — Ple1).

Deffl}ﬁlon 1. If P is an abstract represeniation of a group G, the
mappmg ¢ —‘Plo—') is called the star of the representation P and is
df‘noted by P*. If P is a mairicial representation of @, the mapping

\( 4 (P(e))* 25 called the star representation of P and is denoted by P*,

Proposition 1. Let P be a unilary matricial representation of a
group @ (i.e. a representation which assigns to every ¢&8(F a unttary matriz).
Then _P* cotncides with the imaginary conjugote representation PorP
(i.e. P(e) = Ple)). If P is an orthogonal representation of G, then

* =P,

This follows immediately from the definitions.

On the other hand, we observe that (P*)* = P for any matricial
representation P.
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2. The addition of representations

Let (B;, P1) and (B, P2} be representation spaces of a group G.
We construct the product $1 X Baof By and B, and we assign to every
¢&( the linear ecndomorphism Pie) of By X R defined by

P(ﬂ')(eh eﬂ) = (Pl(ﬂ)el, PE(G’)EE) (e,'E('B,', e i= ]_, 2)

It is clear that P is a representation of G. We say that P is the sum
of the representations P, and P;, and we write P = P, 4 P..

Let {€m1y - * , €ma,} be a base in B (m =1, 2). Let (ay) and
(bi) be the matrices which represent Pi(s) and Pe(s) with respect.te
these bases. Then f; = (eq, 0), - - -, f5, = (e, 0}, fa,41 = (Q,\e;;),
<o o fgea. = (0, €24,) form a base in P; X P, and the matrixX which

ropresents Plo) with respect to this base is K7,
-

((aﬁ) (0) ) N%
(I (23 AN

his loads to the following definition: if aaud B are square matrices
of degrees d, and ds respectively, we shall darote by o + 8 the matrix

o Oy

of degree d, + da. N

Now, if P, and P, are afiatricial representations of a group G,
we shall of course denote byti}l + P, the matricial representation w_hich
assigns to every oS t-hph\utrix P.(e) + Pulo). Tt follows immediately
that, if Pi, P and By.are threc matricial ‘representatﬂi‘m}s c’)kf (7 then
(P1 + Po) + Py =Pk (P + Py and (Py -+ Poy* = Py 4-Pa. T Py
P. and P; are u\’(i\@tfi'act representations, the two sides of the preceding
forinulas ar;@m’t equal, but equivalent. _

If P; and P, are either abstract or matricial representations, then
P: - Prids equivalent to Pi + Pz In fact, assuming P .and P,
to 'gﬁbétract representations, let (s, P,} and (B2, Pz) be their repre-
sentiftion spaces. The linear isomorphism (ey, €1) — (€2 &) of
1 X B: with B X B1is elearly an isoraorphism of (B4 X Pz, PL + P
with (P2 X By, Pe + Py

3, The Kronecker product

Let (P, Pr) and (e, P2) be representa-’t-ion spaces of a group .
Denote by % the space of bilinear functions on P X Po with values
in K. Let ¢ (¢ = 1, 2) be alincar endomorphism of B I we assign
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to every bilinear form BeB the bilinear form ¢(B) defined by
¥(B}(e1, e1) = Blpiey, votr) (e£By ¢ = 1, 2)

we clearly cbtain a lincar endomorphism ¢ of 8. We shall say that ¢
is the linear endemorphism of B which corresponds to the pair (o1, ¢2).
Let #; be some other endomorphism of P: (¢ = 1, 2}, and let = be the
linear endomorphism of ¥ which corvesponds to the pair (6, 8.).
Then wo see eagily that tlie linewr endomorphism which corresponds
to the pair (g1 0 81, @20 62) is7T O . We may compensate for{this in-
version of order by going over (o the corresponding endomatphisms
in the dual space B of 8B, because H{xr 0 ) = 8 O &r, \ )

Definition 2. Lel P, and By be vector spaces over anfield K. The
dual space of the space of bilinear functions on B &XP. is called the
Kronecher product of P1 and Pe and is denoted by Byx Pa.2

Let e; be an clement of P; (£ = 1, 2). To’"t}le pair {e1, e;) there
corresponds & linear function on B which_adslgns to every Be®B the
value B{ey, e;). But a linear function on’,‘%’is an elemeni of By x Po.
Hence we have a mapping of $; X ‘Bg'ihﬁi Ty x P2. We shall denote
by e x e; the element of P1 x P whidh eorresponds to (e, ey).

The mapping (e, €:) — €, ;gp-}..is not a lineur mapping of P; X P2
into P x Ps, but it is bilinearptie. we have

(ae: + a'el) x &2 =Nag1 x e, + a'el x e, e, e1eP;
e1x (aes -+ a’eQ‘ = aeyx es + a'e;x e} a, u'eK

If ;18 a Iinea@%naomorphism of Pi (¢ = 1, 2), the lincar endo-
morphism % of By x P2 transforms e, x e; according to the formula

A W(e1x €2) = ¢ie1x o€y
We sha]}(glgnote W by @1 X @
1\{@3\(:10‘5 (B4, P) and (B4, P;) be representation spaces of a group G-
It follows from what we have said that the mapping & — Pi(e) x Pa(e)
L J¥\Zgain a representation of . This representation is called the
Kronecker product of the representations Py and P, and is represented
bY P1 X Pi-

Let {€msy * -+, €ma,} be a base in Bo (m = 1, 2). Then the dids
elements eyxey (1 <4< d, 1 €< dy) form a base in B x Be.
In fact, since P x P2 has the same dimension ag B, i.e. dids, 1t will be
suflicient fo prove that the clements ey; x e are linearly independent.
Assume that- Zgaqeq x ey = 0, ,eK; then ZyaiBley, ey) = 0 for
every Be®B. For every pair (¢, §) there exists a bilinear funetion By

LIf B = Pz = P, the clements of P x D are the covariant tensors of order 2.
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such that Bi;(en, ex) = 8y If we set B = B, we obtain 2 = 0,
which proves our assertion.
If i is a linear endomorphism of P (¢ = 1, 2), we set

_ wd
g€ = ZyL a0 per; = I® brey
and we have
(‘PI X @2) (eli X 02;) = Eua-k.-b;,-ew X By

If we set fipq—0 = €1 x €2, we have

((Pl X ‘192)fr = Ef::csrfa
with 2 AN

(1) Copdyli-Dkrd -0 = Qabj \

7N

This lcads to the following definition:

Definition 3. Let o = (aw) and 8 = (by) be mairicts of degrees d
and dy respectively.  We denote by « x 8 {and call Kronécker product of o
and B) the matriz {(cn) of degree duly whose cogfficionts are given by
formaula (1), If P; and Py are matricial re beentations of a group @,
we call the Kronecker product of Py and, Pfg-he representation P, x Py
which assigns to every o2 the matriz P{o ) Pu(o).

It follows immediately from ouvflsi'evious considerations that, if «
and @ are matrices of degree d; apd:ci‘ and 3’ matrices of degree ds, then

(aB) x (ﬂs‘ﬁ;). = (axa}BxB)

On the other ha do";{vg see immediately that ‘(ax 8) = ‘e x ‘8.
Therefore, if o and Bare regular matrices, we have (@ x f)* = o™ x 8%
Since (a™)* = o, weualso have (o x BE)* = a* x .

Furthermore\¥é see easily that ax (81 + B2) = ax B+ ax B

It follows that, il Py, Py and P are abstract representations of a

AW * *

group G, then (P;xP:)* is equivalent to P xP;, and P X (P2 + P}
is equiyalcht to PyxP: -+ PixPs Furthermore, P. x Pz_ is changed
into afequivalent representation if Py and P; are changed into cquiva-
lént\répresentations. _

KAltﬁough we do not have a x § = 8 x a, the representation P. X P2
is nevertheless equivalent to P.xPr In fact, .the representation
spaces of these two representations are isomorphic under 41 150mor-
phism which maps every element of the form €1 x s (“"fth e P,
i=1,2) onto exx e, It follows that (P1+ P2) x Ps is equivalent to

Plx Ps + szPa-
Another simple argument of
x P is equivalent to P1 x (Pz x Pa)-

the same kind shows that (P x P2}
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4. A remark on the representation P, x P;

Let P, and P: be matricial representations, of degrees ¢, and d,
respectively, of a group . Let £ be the set of all rectangular matrices
with d; lincs andd; eolumns; ) is a veetor space of dimensiondyd,. Let
us assign toevery (7 the endomorphism A, of £ which maps any matrix
ag) on A,a = Pi(a)aP{o~Y). Tt is easy to verify that A, = A, O A,
{o,7€G) and that A, is the identity mapping of £ if e is the neutral
element of . Therefore, the mapping & — A, is an abstract repre-
sentation A of &.  We assert that A is an abstract form of the represen-
tation Py x P;. O\

Let us denote by aipqi_p the matrix in £ which co‘ntams alat
the intersection of the ¢-th line and the j- th column. and has zeros
elsewhere. The did; elements appa-n (1 £ 7 & dq, 1 € j € dy) form
a base of £1. A simple computation pives .w.\

Pioslaay_nPae—t) = Zmakl(c)@(a Uty e, (i)

“h( T (a;,,(c)) and (Bu(o)) aro the mafrmes Pl(cr) and Py(e). If we sct

Py(o) = (bﬂ(a)), we have bﬂ(o) = b,{e Y, and we see that the matricial
form of A corresponding to our cholce of a base in O is Py x P, , which
proves our assertion.

Let P; be an abstract for:m of P (4 =1, 2), and let (P, P.) be the
representation space of P "The space £ may be interpreted az the
space of linear mappmge of By into B, From this point of view, A,
may be defined tochesthe endomorphism of ) which assizns to_every
asD) the mapplng,{\%a) defined by

SO A (@) (es) = (Pi(o) 0 w0 PalaY))es (€22T2).

It is (aqx\‘to extract frem this fact a new proof of the equivalence of A

with %; P
§IV. SCHUR’S LEMMA

\ Proposmon 1 (Schur’s Lemma). Let P, and Ps be two irreducible
matrictal representations of a group G in o field K, of degrees d1 and ds
respectively. A necessary and sufficient condition for the equivalence of
P. and Py 45 that there showld exist a rectangular matriz o 5 0 with
coefficients in K, with dy rows and dy columns, such that Pi{e)a = aPa(s)
Jor every o=,

If Py is equivalent to Py, we have dy = d, and there exists a regular
matrix v such that Po(e} = y~'Pi(o)v, whence Pi(o)y = vPa(o).
Conversely, let us assume that there exists a matrix « 5 0 such
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that Pi{e}a = aPa(e) for every o2G. We construct representation
spaces Py and P, for Py and Py, and we interpret « as a lincar mapping of
PBp into P Let Oy be the image of Py under this mapping; since
a # 0, we have 0, & {0]. The formula Pi(e)a = aPafs) shows at
once that £, is invarlant. Bince B; iz irreducible, we have Ly = P
Lot 25 be thoe set of veetors in B, which are mapped on 0 by . The
same formula ag above shows that £, is an invariant subspace of Pa.
Since £33 # PBs, we have 0z = {0]. It follows that « is a univalent
linear mapping of PB. onto B;, which proves that d, = d» and that-.q
is a square matrix of determinant # (. Hence we may write P(r)
= aPi(e)a!, which shows that P; and P. are equivalent. Schir's
lemma is thereby proved. o)

Let P be an irreducible matricial representation of the group G.
The matrices « such that P(e}a = oP(e) for all ve ob\'{iﬁusiy form an
algebra o (i.e., if a1 and as are such matrices, then@}q— &g, anery and
ae; also have the property in question, where aj\dny clement of K).
It follows from the proof of Schur’s lemma {applied to the case whaere
P, = P, = P) that every matrix « 5 0 in has an inverse o ; it is
clear that o' also belongs to 0. We express this fact by saying that o
i a division algebra. o\ o

Let y be any element # 0 in o, & let Z be the set of clements of o
which may be expressed in the‘fﬁc}i'rri R(v), R being a rational function
with cocfficients in K. [t js clear that Z is a field which contains K
and is of finite degree ovef X (because Z is eontained in the ring of all
matrices of a certain 1Qére’e d with coefficients in K). Lt follows t..hat,
il K is algebraicall$ {;}sed, we have Z = K, which means that v is of
the form F, ecky ¥ being o unit matrix. We have proved
Proposition 2.~ Lat P be an drreducible represeniution th a group G
wm an azgebmicélly closed field K. The only matrices whwf.a commule
simulmn@sfy with all matrices P(s), 08, are the scalar multiples of the
il mafm:r ] Y
. Proposition 3. Let A and P be two represe-ntghpns of a group G inan
Wgpbraically closed field K, and assumte that P 4s irreducible. If 4 {m'af
A'x P* are semi-simple, the number of times that P w. co-rftamed %n A ?a
equal to the number of times that the untt representafion 8 contained in
AxP*

By the unit representation of a group ¢ we mean of course the

representation which assigns to every o€G the number 1 (considered

a8 a matrix of degree 1). An abstract form of this 'r'epl'esentatiﬂll has

8 representation space € of dimension 1 and assigns to every oiG
the identity mapping of & onto itself.
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Let M be any semi-simple representation of Fin K, and let M = 9N,
+ -+ + P be a decomposition of its reprosentation space into y
direct sum of irreducible subspaces. We may assumne that ¢, - - -,
I, are all the terms (if any) which are isomorphic to the space E
of the unit representation (n is an integer such that 0 < n £ ).
Then each I; with 1 £ 7 € nis spanned by a vector e; = 0 such that
M(c)e: = e; for every ve@. Conversely, let f be any vector such that
M{(a)f = f for every ¢. We may write f = 3, fieDl. We have by
assumption Zf; = ZM(a)f;, M(c)f60%; the sum of the spaces Pxbeing
direct, we have M(e)f: = £; (1 € < < h). If ¢ > n, Y canhot con-
tain any vector f; = 0 with this property. It follows that $48 a lincar
combination of e, - - + , e,. We conclude that the m’uﬁber of times
that the unit representation is contained in M is equalifo the maximal
number of linearly independent vectors e in It Sgoh that M(sle = ¢

for all oo, ~“’;.\
We come now to the proof of Proposition 3. The teprescntation A
is equivalent to & sum A; + -+ + F A, pf\h‘l‘cduciblc representations,

and A'x P* is equivalent to A, x P* 47 - 4 Ay x P*. This shows
that it is sufficient to prove Propositiof 3 in the case where A ig itself
irreducible. o\

We may take as rcpreser;t:-ﬁiiou space of A x P* the spuace of all
linear mappings 4 of the representation space P of P into the repre-
sentation space € of A (ef. $IIT, p. 182). The representation A x P*
then assigns to every@®G the mapping A — Ac = (A(e))A P ()
If A« = 4 for all ,@e’have A{o}A = AP(s), and Schur's lemma says
that this can hap}% with an 4 # 0 oaly in the case where A and P
are equivalente \Assuming that this is the ease, Proposition 2 shows
that all elementé 4 such that 47 = 4 for all ¢2¢; are the scalar multiples
of one o.f,\t}:}ein. This shows that the unit representation is not con-
tained inwA x P* if A is not equivalent to P and is econtaingd exactly
oncg’::in A x P*if Ais equivalent to P, Proposition 3 is thereby proved.

\»\3 D §V. ORTHOGONALITY RELATIONS

Let & be a compact Lie group, and lot M be a matricial representa-
tion of @ in the field of complex numbers. We shall show how it is
possible to compute the number of times the unit representation E is
contained in M.

We introduce the invariant integration process on @, normalized
a8 usual by the condition that [gl-ds = 1. We donote by Me =
J&M (e} do the matrix whose cocfficionts are the integrals over ® of the
coefficients of M(o).
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We may consider M as a matricial form of an abstract representa-
tion, which we also denote by M. Let I be the representation space,
and let {e1, * - » , €4} be the base in M by which the matricial form M
is derived. If e is any vector in MM, we assert that M(o)Mse = Mee
for every o€(. In fact, we set M(r)e = Z¢ wu(r)e;, We have

Mee = Z{Jgulr) dre;
M{e)Mee = Z(fgu(r) driMo)e;
= Zylg(ma(o)u(r) dr)e; O\
if M) = (mu(e)). DBut we have O\
S ma(@une; = MEM@e = Mere O
= E;u,—(af)e; "'( N
and our assertion follows from the formulas \\ ’

suior) dr = S dr N\
Jeuilor) Joudr) AN

Conversely, if f is any vector such tha,t\'&(cr)f = f for every o5(7,
we have clearly Mof = £, It follows thaﬁ the vectors fef such that
M{(o)f = £ for all ¢&@ are exactly those Véctors which are of the form
Moe, e,  In other words, the number of times that the unit representa-
tion s contained in M is equal tadhe rank of the matriz M.

Now, let A and P be two irreducible representations of & in the
field of complex numbers, {We sct

“Mo) = Alo) x P*)
’ My = [eMle) da

We know that the unit representation E is not contained in M if A
is not eqUiVarlénR“to P and that E is contained exactly once in Mif A is
EQUiva-lent.tﬁo 'P. Hence, Mo is the null matrix in the first case, and
isa ma»ti:.ix of rank 1 in the second case.

_Bhe coofficients of M(e} are the products of the coefficients of
AQ:)}BY the coefficients of P(e™1). It follows that, if A and P are not
equivalent, we have

[wa(a)ble™) do =0
where alo) and b(e) are arbitrary coefficients of A(r) and P(c) respec-
tively, .

In order to investigate the case where 4 and P are _eqmva.lent‘, we
shall assyme that A = P and that A is a Tepresentation by umt:.a,ry
matrices (we know that, in any case, Als equiv%lent to a representation
by unitary matrices). Let 2 be & representatlon space for A, and let
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fel, © -+, es} be the base in & which gives risc to the matricial
representation A. We know that we may consider the space M of
linear mappings of € into itself as a representation space for A x A®
= M. Let Oy be the element of M which maps €; upon e, and e; upon
0 for 7 # j. Then we have

M(@)8y; = A(0)0sA(07") = Zuor(e)an{o)0u

if Ae) = (aule)). A

Let ©, be the identity mapping of € into itself (i.e. 8, = 2.8;),
We know that the scalar multiples of &, are the only mappings of £
into itself which commute with every A{o), seG. Tt fo]qus that M
is a scalar multiple of @, for every 829%. We coneludg, thiat

Jpauio)aale) do = Suey M'\'\.'

where ¢; is 2 number which does not depend\dif’ k. We know that,
Jef(e) do = [ef(e~") do for any continuopg function f on &, There-
fore we have A

Joan(o)op{o~Ylove duc;

Comparing our two formulas, “{e,’éhnclude easily that e¢; = dy¢ with
some constant e. The value offpcan be determined; in fact, we have
clearly M(s)6, = 8, for evelyd o, whence M@; = 6,, and it follows
immediately that ¢ = d—1¢°

Let us now observe that, if A is a representation by unitary matrices,
we have ap(e—t) = &Y.

Definition 1. Met & be a compact Lie group. Any function on &
which appears, &8;cocflicient of some trreducible representalion of & by
URTLArY -ma{!r@es i8 called a simple representative function on ©. Any
linear combgnation of simple represeniative Junctions is called a repre-
sentatipe function.

We, have proved :

L Theorem 2. Let f and g be two stmple representative functions on ¢

Seompact Lie group ®. If f and g appear as coeflicients in two ineguiva-
lent trreducible representations, we have Jefle)gle N de = 0. Iffondg
are coeflicienis of the same irreducible representution of degree d, the
integral [@f(o)g(o) do is equal to d—1 if § = gand o Q0 f f = ¢.

§VI. THE CHARACTERS

Definition 1. Zet P be a matricial representation of a group .
The trace of the matriz Ple), considered as a Sunction of the element
o€, 13 called the character of the representation P.
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Proposition 1. Twe equivalent representations have the same
character. If ¢ and r are conjugate elements of G and if x 1s the character
of any representation of @, we have x(e) = x(7).

Both assertions follow immediately from the formula Spafia!
= SpB, where « and 8 are matrices, a having an inverse.

It is clear that the relationship of equivalence hetween representa-
tivns defines a division of the set of all representations into classes of
mutually cquivalent representations.

Definition 2. A class of represeniations of a group ¢ is @ setfvf
represeniations which 4s composed of all represeniations equivalent to bite
af them. )

It follows from Proposition 1 that to every class of I'QIJlch%é\ntations
of the group & there is associated 2 function defined on Gythe'character
of any representation of the class.  This function is c"a.iled the char-
acter of the clags. "‘.\

Let §1 and & be two clagses of representations of a group (7 in a
fleld K. From what has been said in §1IT7, ut{b}lows that:

1) the star representation P* of » repra’&nﬁahon Peft, belongs to a
class §7 which depends only on &1

2} the sum P; 4+ P, of a repre%niabion P,2®; and s representation
P.efly belongs to a class §1 4 .S"v.e wwhich depends only on 8, and §a;
moreover £ 4+ f1 = £ - Sapl

3} the Kronecker produet Pi x P2 belongs to a class f, x f2 which
depends only on 1 ahd, ﬁ‘)\, moreover, £2 x &1 = 1 x Ko

Trurthermore, the\&[}eratlons of addition and Kronecker nmulti-
plication arc associgtive in the domain of the classes of representations,
and the Kronec\ker multiplication is distributive with respect to
the addition.. {IFowever, the classes of representations do not fornia
ring, bcv&us&&ubtractwn is gencrally impossible.

Let ys\dénote by xgq the character of a class of representations &.

Pmposumn 1. If R, and 8 are two classes of representations, we
hm)e
\V Xoaq = Xo T X

' XX < X8 X8

In faet, if o and @ are matrices, we see easily that Spla + 8) = Spa
+ Sp8, Spax B = (Spa)(Sph)- _ N
If a class of representations contains an irreducible {a semi-simple)
representation, every representation of the class is irredueible (serni-
simple). We then say that the class itself is irreducible {semi-simple}.
Every semi-simple class £ can be represented in the form Zsr.8i,
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the zs being non negative integers and the £.s being irreducible
classes. The number z; is the number of times that & representation
of the class §; is contained in a representation of the class 8. This
number depends only upon § and &;; it is called the number of times
that & is contained in R.

Proposition 2. Let &, and 2 be two irreducible classes of represen-
tations of a compaet Lie group © in the field of complexr numbers. The
tntegral )

J.@XRI(*T)J‘CRE('T) do N
tsequal o 0 if fs = foand o 1¢f 1= § "\

In fact, if P; iz a representation of thc class = ~1 2), xg, (o)
is the sum of the elements of the main diagonal, of P (o) and our
statement follows immediately from Theorem 2, ,&‘ p. 186.

Corollary 1. The number of times that agJxveducible class £ of
representations of & compact Lie group {s cqnzamed n a class § is
equal fo

f@XQ(J)XQ (C‘) EIT

In fact, if we write § = Z2:8,, \whaxe Xp = Zitixg, and our state-
ment follows immediately from, Propo-,ltion 2.

Corollary 2, Two classes, bf representations of @ compaci Lie group
cotncide if and only if theyshave the same character.

In faet, Corollary 1"'6}10\\& that, if two classes £ and £ have the
same character, ev elg(u'redumble clasg is contained the same number of
times in & and inR’.

~ '§VII THE REPRESENTATIVE RING

Deﬁmtmn\l The representative ring of a compact Lie group ® is
the ring %nemted over the field of eomplex numbers by the coefficients of
all rephesentations of ©.

- (In’ other words, the clements of the representative ring are the
\Qomplex valued functions on & which may be expressed as poly-
nomials in the coefficients of the representations of ®.

More generally, let & be any set of representations of ®. We shall
denote by 5(€) the ring generated by the coefficients of the representa-
tions belonging to &,

If &, &; are two sets of representations, we shall now find under
what condition it is true that 0(g,) = a(&,).

We shall say that the set & is closed if the following conditions are
satisfied:
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1) If P28, P:g8, then also Py 4 Pazs, P, x Pies

2) If an irreducible representation P is contained in a representa-
{jon belonging to &, then Pe&.

3) A reprosentation which is equivalent to a representation belong-
ing to & belongs to &.

Let &, be any set of representations of @. Let us consider the set
7 of all irreducible representations which are contained in representa-
tiong of the form Ay x - -+ x As, with 4,88, (1 <4< h). TPandP:
belong to &, then every irreducible representation which is contained\
in Py xP. also belongs to & Let & be the set of representations
which are equivalent Lo repregentations of the forn P+ - - P
with P;es (1 € j € k). Tt is clear that & is closed and ig the&mallest
elosed set of representations which eontains &i. N

Proposition 1. Let & be a set of representations o{@'ami let & be
the smallest closed sel of represeninifons containing &) The ring 0(81)
coincides with the set A of oll linear combinations wih zomplex coeflicionts
of cocfficients of trreducible representations belonguiy o &,

Tet P be any irreducible representatior}\ Belonging to & Then

there exist representations 4, © -+, A4 E; such that P is contained
inAix - -+ x Ag, Lo there exists a_regular matrix v such that

vy x - aji.:»\',‘)'y—l -PiN

where N is some represeutation. Every cocfficient of the representa-
tion Ayx - - XA iS\Q\ijdlIGt of coefficients of the representations
Ay, - - -, A, and henee belongs to 0(&1). It follows that the coeffi-
cients of P 4+ N (s:h'(f in particular those of P) belong to 0{&.), whenee
A Co&). o0 _

If A is @ny represcntation belonging to 8, the coefficients of A
belong $0N 4 Tn fact, we know that A= 5P+ - + Pk?ﬁ_l
whereng¥s a regular matris and where Py, <= -, Pe are irreducible
a{ﬂfbe’long to &. ) .

{f P and P’ are two irreducible representations belonging to &,
we have P x P'es. Tt follows that the product of any coefﬁcl'ent of P
by anv coefficient of P belongs to A, from which we dcduce_lmmedl-
agely 1hat A is a ring. Since A of8) and every cneﬂiclen.t of a
representation of the seb €5 belongs to 4,1t follows that 4 = o(81}. .

Proposition 2. Let & and & be two sels of rrfp?‘ﬂscnfafwns of (:
A necessary ond sufficient condition. for the “Q‘lfa-l?-ﬁy p{&1) = Dg;-z) f;
hold is for the smallest closed sets of representalions condaining &, and

8, respectively to be equal.
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Proposition 1 shows that the condition is sufficient. Te prove
the converse, let us assume that there exists an irreducible representa-
tion P which belongs to the smallest closed set containing &, but not
to the smallest closed set containing &;. Let f be any coefficient = 0
of P. If g is any coefficient of an irreducible representation belonging
to the smallest closed set containing &,, we have, by the orthogonality
relations,

ey Jog(0)f(e) de = 0 ~
It follows that the same formule holds for any geo(8,). S'}nc\e
Jeof(e)f(e) do >0, O

the function f docs not belong to 9(&,), whence 0(8y8 0(&2).

Definition 2. We say that a set & of represepiiditons of & contains
sufficiently many representations if the smalleslelosed set containing &
i8 the sel of all representations of &. AN

It follows from Proposition 2 that thighwill happen if and only if
0(8) is the whole representative ring_ Moreover, it follows from the
proof of Proposition 2 that, if & doed not contain sufficiently many
representations, there exists alfl.,’:irredueible representation P of &
such that (1} holds for every g&p(8) and for every coefficient Sfof P

Proposition 3. If @ aditils a faithful representation Po, the set
{Poy Po} contains suffieldntly many representations (Po denotes the
the smoginary conjugat®representation of Po).

We denote by*gy the degree of Py and we sot Po(o) = (isla))
(1€ 4,3 < do). Oy

Lemma L (Let f be any continuous funclion on & and let @ be a
number AL The ring generated by the 2d% funciions (o), Tilo)
condat :é@}function J1 such that | f(o) — fi(o)| € a for all o6,

Yerdenote by yiraG-v(8), Yirai—psas() the real and imaginary
parfsiof the coefficients of a matrix ¢ of dogree do (1 < i, 7 < do).

ra i . . - .
~\JThe representation P; maps ® in a continuous univalent way onto a

N\

subgroup ®&; of GL{dy, C). Since ®is compaet, Py is a homcomorphism
and ®, is compact. To every ¢2® let us assign the point ¢(s)eR2’
whose coordinates arc the numbers y,(Po(s)), - + - s Yea(Polo)). We
clearly obtain a homeomorphism ¢ of @ with a compact subset K of
R, The function f, = f© ¢! is a continnous function defined on
K. From a well known theorem in topology” it follows that f, may be
extended to a continuous function defined on the whole of R ; we

t Of. Tietze's extension theorem, L.efschetz, Algehraie Topology, 34.2, p. 28.
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still denote by f» this extended function. Since K is compact, 1t is
pounded; let M be an upper bound for the coordinates of the points
of K. By the Welerstrass approximation theorem, we know that there

exists a polypomial Q(yy, -« -, yaee) = Q(y) such that the inequality
Ifo(y) — Qv S @
holds for all points ¥ = (yy, * * * , Y such that |yl E$MO<Lk

< 242). We define the function f; by the formula

fi(e) = Qi Pale)), * « + 5 Yaar(Polo}))
Then we have |f(e) — fi(e)] € afor all 0e@®. Since O\

Yerai(§) = F(a(t) + 5lD)) W\
Yirdi—iratE) = — % & =1 (a(§) — 5ii(§))}""~

the function fi may be expressed as a polynemial’..ifx‘the functions
(e}, Tiy{o). Lemma 1is proved. 4

Now, we can prove Proposition 3. Assqn:Q&,‘for a moment that
the set & does not contain sufficiently manjeifepresentations. From
the vemark which follows Proposition 2, ibjollows that there exists a
econtinyous function f # 0 on & guch that (1) holds for every ges({Po
Psl). Let m be an upper bound forithe absolute value of f. Bince
[6f(e)f(e) do > 0, we can ﬁndQe;';ﬁumber a > 0 such that

an [o)(@](6) &

Gt a function f160{{Ps Po}) such that |f(o)

By Lemma 1, there g\
— fi@)] € afor alleg@. Tt follows that

o efflo) dol = lf(s(e) — fieNfie) el < em

which givesa ‘e\ontre.-dictiou. Proposition 3 s thereby proved. .

Remarl,” It follows from Lemma 1 that, if ® is a compact Lic
grmlp,“\%hich admits at least onc faithful representation, then every
cenﬁﬁﬁoue function on @ may be approximated as closely as we
\ ‘qﬁ"by a funection helonging to the representative ring of ®. Later

on, we shall prove that this result holds independently of any

assumption on the existence of representations and we shall derive

from it the existence of a faithful representation. . It
Now, let © be a closed subgroup of our compact Lie group ©.

P is a representation of ®, the contraction to © of the MAPPINE ; Pie)

is a representation of 9, which we shall eall t.he contraction (_)f t-? @;‘
Proposition 4. Assume that a compach Lie group ® adm‘té;‘ atT;ai

one faithjul representalion, and let § be a dosed subgroup of ©. ¢
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every trreducible representation of D is contuined in the contraction (o
of some representation of ®,

Let Py be a faithful representation of & and let Ay be the contraction
of Po to . Then Ay s a faithful representation of §, and therefore
the set {Ao, Ao} contains sufficiently many representutions of §. It
follows that every irreducible representation of $ is contained in

some representation of the form Aex - - - xAsxAvx * ¢ X Ae
But any such representation is clearly the contraction to & of some
representation of . Q)

Proposition 5. Let & be o compact Lie group which admits ableast
one faithful representation and let © be a closed subgroup of/®. If
D = ©, there exisls al least one irreducible representation,of@, distinct
from the wnit represeniaiion, whose contraction to © conleins the wnit
representaiion of 9. D

Let us seleet a representation Pg in each clélsé & of equivalent
representations of . Denote by f(7, j; PR)\the coefficicnts of Pg.
Every function f of the representative ring/d0f ® may be written in
the form \N

7= Zui9a0, §; PR, §; Pe)

where 8 runs over all elasses gﬁiii'féducible representations and the
a{?, j; Pg) are constants of which only a finite number are 0.
Making use of the orthogonality relations, we obtain

AN
@) «J8fe a0 = a0, 1,8

where E is the uni€ Bepresentation.

Let us assymé/for a moment that the eontractions to $ of the
representationsPg = E never contain the unit representation of $.
Then the\ﬁf%}ft'ra-ct-ion of each f(z, 7; Pg) to § will be a linear combina-
tion of éoefficients of irreducible representations of §, and, if Pg = E,
this expression will involve only coefficients of irreducible representa-
prons/of O distinet from the unit representation.

‘By the same argument which was used in proving (2), we see
that we shall have

I(f; ) = a(l, L, E) = [6f(s) do

where I(*; ) Is the invariant integral over the compact group 9,
normalized as usual in such a way that I(1; §) = 1.

The equality T ( [3 $) = Jef(e) do, which holds for all functions
J of the representative ring o, holds also for every continuous function
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on ®, since such a function can be approximated as closely as we wish
by a function of o.

Since © # &, there exists a continuous function f on ® which
gatisfies the following conditions: 1) f vanishes everywhere on ©;
2 f dges not vanish identically on @' Then we have I{(ff; ) = 0,
{ef{e)f(a} do # 0, which brings a contradiction.

Let us now return to the study of an arbitrary eompact Lie group
@, without making the assumption that & admits a faithful represen-
tation. Let M be the set of those clements ¢&® which are representeth,
by unit matrices in all representations of . It iz clear that 3 iha
closed distinguished subgroup of ®. We denote by O the ‘group
®/N. Tivery representation of & maps J upon the unit matgix, snd
hence defines & representation of ®). Conversely, everyreprescnta-
tion of ®; will correspond to a representation of ®., b Tollows that
the representative rings of @ and ® are isomorphic.y

Furthermore, if ¢ is any element of & othsr than the neutral
element, there exists a representation P of, @}\Such that P{s) is not
the unit matrix. We shall deduce fropythis fact that © admits a
fuithful representation. O

Since &, is a Lie group, there,,ex‘ists an open neighbourhood Vi
of the neutral element ¢ in &, which does not contain any subgroup
of ©;¢ we denote by F the chini)lement of V,in @& If P is any
representation of ®i, we dellate by R(P) the kernel of the representa-
tion P. It iz clear thajci‘i’@éP} i« 8 closed suhgroup of &, and that the
intersection of the gg@upg R(P) for all representations P is the set
{e:}. Hence we héve

P\ PPy F) = ¢
A
Sinee F i iﬁb:rhpact, there exists a finite set {Py © -+, P} of repre-
sentatiohs of ®: such that Nk Py N F) = & It follows that
{.;k\s,l}(P‘-) { V.; since the left side of this inelusion 1s a group, this
group must be [es). 1t follows immediately that Py s +P
W4 faithful representation of ®r

From this, we deduce casily.

Proposition 6. Let ® be a come
representation P of © with the following property: &
Lernel of P ¢s also mapped upon @ unit matriz by any ot

1 contained in O. The function deﬁr.led on
$ LJL[{:E}gasbf)e%il;g cel:i?;n:‘o ?Jf 0‘1@3 \gjgml to 1 at o may be extended to a continuous

function on § (cf. L. note 1, p- 190)
® This follows easily from Lemma

act Lie group. There exists @
ery element of the
her representation

'y, §XLI1, Chaptes 19, p. 127-
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of ®. The coefficients of the represeniations P and P form a system of
generators of the represeniaiive ring of &,

The last statement follows from Proposition 3, applied fo the group
®; = @/N, where N is the kernel of P.

§VIII, THE ALGEBRAIC STRUCTURE OF THE REPRESENTATIVE RING

We shall denote by @ a eompact Lie group and by o the representa-
tive ring of . )

If P is any representation of ®, we shall denote by d(P) the de}g;ree
of P and by f(i, j; P) the (3, j)-coefficient of P (1 < %, Q’LE(R)); 0 is
therefore the ring generated by all functions of the form\f%, 7; P).
We know that there exists a finite set of reprosentations™of @ which
contains sufficiently many representations; if {Pr, A& -3, Pa) is such
a set, the functions f(4, j; Pe) (1 € 4,7 € d(Px), LEL Y € &) form a set
of gencrators of 0. We wish to find the alpebraic relations which
hold among these generators. AN

It will be convenient to introduce Mew independent varighles
u(z, §; P) (1 £ 4, j € d(P), P running6yer all representations of ).
Let u be the ring of polynomials in the’variables u(Z, 7: P) with coefli-
cients in C (there are infinitely rr}é,jriy variables, but each peolynomial
contains only a finite number of-fiiem). There exists a homomorphism
of u onto o which maps cach %{#, j; P) upon the corresponding f(7, 7; P).
Let a be the kerncl of thistemomorphism, We propose to determine
o by exhibiting a set Qﬁ'“ge\leratﬂrs of this ideal.

To every representation P let us assign the matrix U(P) of degreo
d(P) whose coefficlents are the u(s, j; P). Among the polynomials
belonging to ay We find in particular the following ones:

1) The goefficients of the matrices UP, + Ps) — (U7 (P)) + UP2)),
U(Py x RaY™S™ T (Py) x U(P:) for all possible choices of the representa-
tions E’;’,Q’z";

2} the coefficients of the matrices U(yPy~1) — yU(P)y—2, where v
is @Dy regular matrix of degree d(P);

. 3) the polynomial u(1, 1; E} — 1, wherc E stands for the unit rep-
resentation of Q.

Proposition 1.  The polynomials listed under the headings 1}, 2), 3)
Jorm a set of generators of the ideal a.

Let o, be the smallest ideal containing the polynomials listed in
1), 2}, 3). We have to prove that a; = a.

Let us select a representation in each elass of equivalent irreducible
representations; let {Pa}aea be the set of rcpresentations obtained
in this way (4 being some set of indices). We assert that every
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polynomial in 1 is congruent modulo ¢; to some finite linear combina-
tion of the variables u(Z, 1:P.) (1 € 4,5 € d(P.); agd). Itissufficient
to prove this for the constant 1, for each variable (7, j; P) and for the
products of any two of these variables. We have 1= u(l, 1; E)
(med a;), and E is certainly one of the representations P.. ILfPisany
rgpresentation, there cxists & matrix v such that P = y(Po, + - -
L Pt ey, - v, agd); it follows that the coefficients of U(P)
are congruent modulo a; to the corresponding coefficients of vy(U/(P..)
% o+ 4 UP.,))v", which arc themselves linear combinations, of\\
the variables u(3, j; Po). Finally, we observe that w(g, §; Pule’, 75 PY
is a cocfficient of U{(P) x U(P") and is thercfore congrucnt modig)a
to a cocfficient of U(P x P"), i.e. also to a linear combinaijonjof the
variables u(z, j; Po).  Our assertion is thereby proved. ¢ Ny
Let P be any polynomial in the ideal a. We hav&\«\"

P = Za(i, j; uli, ;P (m0d By
:.\ ’

where the a(Z, j: o)'s are constants. It falgwsthat Za(i, j; a)u(, j; Pa)
ga, whence Za(i, j; e)f(i, §; Pa) = 0 Multiplying by 7%, I; Pa)
and integrating over the group, wesobtain (by the orthogonality
relations) alk, I; &) = 0 for all couttbinations (k, I; «). It follows that
Pea;; Proposition 1 is proved. NNy
If we know any systempOfgenerators fzy, - * v, #n} of the repre-
sentative ring o, we m;aﬁf’bbtain the algebraic relations among these
generators in the folléq‘iﬁg way! We CXpress each f(z, 7; P) as a.poly-
nomial in the quantities z, and we substitute these expressions i the
relations among&uﬁ&titms { which result from 1), 2), 3. .
We shall fow study the homomorphisms & of the representative
ring o intdthe field of complex nurabers. If oz, * " Zn forfn a
syster Oﬁenerators of 9,4 homomntorphism @ is unlquel}_r determined
when\'%}{'e numbers &(z) =y " " " @(zm) = Um aTE gl.v.en. Tll‘lese
firdbers cannot be taken arbitrarily but must satisfy the relatfnns
%fai, «++, @n) = 0, where the Plzy, - ° s z,) = 0 are the relations
which hold among 21, = © * » #m in 0. It [ollows ‘E-hat the horlno—
morphisms of a into €' may be identified \\-'il‘jh the points of the alge-
braie variety the equations P = U. _
a;;;ff:ilgzidﬁnitbi be ﬁga ?‘epmsentative ring of @ compact i;w
group ©. The sel of homomorphisms of 0 into the field C ,ﬁf‘ comp. féx
numbers is called the algebrate variely associated with &. This vareety
will be denoted by M(E).

is gi » set of points
If a system of generators {21, " Zw} 18 EIVED, the set of p



196 COMPACT LIE GROUPS [{Crar, VI

(@(21), * - -, @(2m))(eM(®)) is called the model of M(®) correspond-
ing to the genemtors Zy, 0y Eme

Definition 2. Let R be the set of all represeniations of a compact
Lie group ®. By u represeniation of R we understand ¢ mapping ¢
which assigns to every PeM a regular matriz {(P) of degree equal fo the
degree d(P) of P, n such a way {hat the equalities

(1) P+ Py = eP) + £ (P2); {(P1x Py = {(Py) x {(P2);
SPy ™) = Pyt

hold for any representations Py, Ps, P of @ and any regular majmz v of
degree d(P).

Let & be any homomorphism of the representative j;mg p into C.
Let us assign to any Iepro%ntatlon P the matrix {5 (P) uhose coeflicients
are the numbers &(f(Z, j; PY) (1 £ £ AP, \ve\nbtam a mapping
{s which assigns a matrix to every element of SN

Proposition 2. If oM@, the mappwg\\g‘r is a representation of
R and the mapping & ~— {; 15 & one-fo- -0t mappmg of MW onto the set
of representaiions of K.

The conditions {1) are obnously satlsﬁed for {z. In order to
prove that {; is a representatmn.of ’.’}i it will therefore be sufficient to
prove that {5{P) is a regular_ miatrix. We have P*(o) - tP(s) = 1 (the
unit matrix) for every o¢®._ It follows that

%16, 3 P*)g(?»?j; Py=su (154 k< dP)
Since @ is a homomorphism, we have

SO ZafG, 3 PSUE, 5 P) = da
whenee %{Pﬁ) %z{P) = 1, which proves that (P) is regular and that
@) 3 (P = (ra(P))*
)i @1, oz are distinet elements of NM(E), there exists a representative
function f(7, j; P} such that @,(f(7, j; P)) 5 &:(f(7, 7; P)); it follows that
{é](P) # ;‘&e(P)'

Finally, let ¢ be any representation of . To each variable
u(?, j; P) let us assign the number &(u(i, j; P)) which stands at the
intersection of the i-th row and the j-th column of ¢(P). Since the
variables u(z, j; P) are algebraically independent, & may be extended
to a homomorphism (also denoted by &) of the ring of polynomials
in the variables u. Since { is a representation of 9, the polynomials
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m the categories 1), 2) above are obviously mapped upon 0. More-
over, let E be the unit representation; then ¢(E) is & number = 0
which is equal to its own square in virtue of the equality E x E = E.
It follows that ¢(E} = 1, whence &(x(1, 1; E) — 1) = 0.

By Proposition 1, the polynomials of the ideal a are all mapped
on 0 by the homomorphism @. Sinee o may be identified with the
factor ring of o in the polynomial ring, we see that & defines in a natural
way a homomorphism & of o into €. Tt is clear that ¢ = {z. Proposi-
tion 2 is thereby proved. \

Remark., We have incidentally proved that, if { is any reprgsenta-
tion of 3¢, then we have )

'\

¢P*) = P> \ >

for any representation P of &. D

Let {1, te be any two representations of 9. Wg:\see immediately
that the mapping P — ,(P)t7’(P) is again a repugsentation of . It
follows immediately that the representations’ af0t form a group.

Definition 3. Making use of the goireSpondence estableshed by
Proposition 2 between the elements of SM{@Yand the representations of R,
a group structure is defined in M(O)N The group obtained in this way
is called the algebraic group associaled with ©.

We shall now introduce 2. iﬁf)ology in M(®). To every sct of
generators {25, - - -, 2n} ofap there corresponds a model M, of M(H),
and the elements of fm(@i)\ére in a one-to-one correspondence with the
points of this model. \'m’r:e M. { €™, M, earries a natural topology
(induced by the $opology in €™); the one-to-ome correspondence
between M, and 9B(®) therefore defines a topology in 9E().  We shall
see that this oi)(\)lngy does not depend upon the choice of the model
M, Let Miibe an other model, defined by a sct of generators [},

*, z},{};""l‘hen each 2z can be eéxpressed as a polynomial in 21,

: ,~ér;,», and each #r can be expressed as & polymomialinz, -+, Zn
Ij;\fﬁﬁb’.\-vs immediately that the correspondence between points of M,

nd 3. which correspond to the same element of 3M(M) is a homeo-
morphism, which proves our assertion. ‘

Let {Ps, -+« , Pa} be asystem of sufficiently many representations
of & We set Po=Pi4 - +Pr+P 4+ - P and we
denote by dq the degree of P We know that the dj functions Jii,3; Po)
(1 €4, 7 < d) form a set of generators of 0. Let us ussign to every
SEM(®) the matrix {5(Po), which we also denote by @{Ps)- IF is
clear that we obtain a representation of the group (S} by matrices
of degree dp.  Since the functions fG, j; Po) give rise to a mode! of
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aN(®), this representation is faithful and is a homeomorphism. It
follows immediately that the topological structure and the group
structure on M (®) combine to define M(®) as a topological group.

More generally, if P is any representation of &, the mapping
& — £3(P) is a representation of 9M(&). We shall denote this represen-
tation by p.

Proposition 3. Let P be a representation of O whose coefficients
form o system of generators of the representaiive ring of ®.  Then P maps
MU(E) onto the sel of all matrices (wy) which have the following preperty:
if Pis any polynomial such that P(- -+ f(Z, §; P} - - -} = 0idéndically,
then P(- + ~ay » » ) =10, )

In fact, if eed(®), the coefficients of Bla) = &(P) zprcﬁh(: numbers
cl(f(f, 7; P)). Since @ is a homomorphism, ’she equality ' F(- - - f(Z, j;
P) - - o) = 0implies P(- - - o(f(5, 5;P)) -+ ) s

Conw reely, let (2y) be any matrix “huh S}ﬁ&-‘sﬁm our condition,
HBinee the elements f(Z, j; P) form a system of ggnerators of the repre-
sentative ring o, our condition implies the g@t‘cnm of a homomorphism
@ of o into € such that &(f(7, §; P)) = x,,‘{d‘ £ 4,7 < dP)Y). Itfollows
that the matrix {z;;) is equal to w(P), which ecompletes the proof of
Proposition 3.

Remark. It can be prov ed~ﬁh&t if P is any representation swhatso-
ever of ®, then P maps M (S ohto the set of those matrices which are
regular and satisfy the condltion stated in Proposition 3. We shall
omit this proof, w hlchmxa little more diffieult.

Corollary. 'hxa\grbmzc group associgted with ®& is a Lie group.

In fact, this group is isomorphic (as a topological group) with a
subgroup of GE(#; C) which is defined by algebraic relations between
coeflicients, :111& 1z therefore closed in GL{d; ). At the same time, it
now becomies clear why we have called this group the algebraie group

assomg,t\gd with .

M:'ﬁIX. TOPOLOGICAL STRUCTURE OF THE ASSOCIATED GROUP

Let @ be a ecompact Lie group, and lot 9N(®) be its associated
algebraic group. If f is any function belonging to the representative
ring o of &, then the imaginary conjugate f of f also belongs to o.
The mapping f— f is an automorphism of s which changes every
complex constant into its imaginary conjugate. Now, let @ be any
homoB'phism of o into C; it is quite easy to verify that the mapping
f— &(f) is again a homomorphism of o into €. We shall denote this
new homomorphisin by &,
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Let P be any representation of . We have
1 P(a) = &Py = a(P)

where P is the imaginary conjugate representation of P. It follows
that {@1@2)° = wi@s. Since (@4 = &, the operation * appears as an
autemorphism of order 2 of the group M(®}. This automorphism is
obvicusly also a homeomorphism of M{®) with itself.

It follows that the set of elements & for which @ = &* iz a closed
subgroup &, of MM(H). \

Let ¢ be any element in . The mapping f — f{o}(f¢o) i3 ¢legrly
a homomorphism &, of o inte . If P s any representation ef \@5@ we
have P(6.) = &.(P) = P(o); it follows that the mapping & -¥a, is o
continuous homomorphism of @ into 9(®). This hdfnomorphism
maps ® onto some compact subgroup &, of M(®). _Sinve fio) = f(o),
we have &) = @, whenee & ( ®;,. We shall prows that &) = G

Proposition 1. Let & be an element of OAOH such thai o = &

being the aulomorphism defined by (1). iﬁl@z}:‘aem cxtsts an element

oe® such that a(f) = fo) for every foo. S&)

We first prove

Lemma 1. The group & is cumpéét‘.

Let Py be a unitary reprcsenpafr;iiﬁl of ® whose coefficients form a
system of generators of p. Wehave, for any aem(®),

@ (Po) =afPo) = &(P) = (@(Po))*

(cf. Remark after Pro‘p&l\bion 2, §VIII, p. 197). Therefore, if @ = &,
the matrix &{Po) =\P#&) is unitary. On the other hand, By is u
fuithful representafion of M(®) and thereforc maps ¢, topologically
onto a closed abgroup of GL{Z(Ps), C). Since this subgroup is con-
tained in N(dkPg)), it is compact, which proves Lemma 1.

Since ®! and @, are compact Lie groups, in order to prove that
®, =-®s, we may apply the criterion of Proposition 5, §VIL, p. 192,

t\be any representation of ©.; the contraction of A to ®; is »
reptesentation P of @,  Assuming that P contains the unit representa-
tion of &, we want to prove that A contains the unit representation of
®,. There cxists by assumption & regular matrix v such that

1 0....0

0
ya(@ )yt = . M)



200 COMPACT LIE GROUPS [Crse. VI

for all se®. Let fi{e) be the coefficients of the representation vAy—!
of &, (1 €%, 1< d(A)). Making use of the representation Py intro-
duced in the proof of Lemma 1, we denote by (&) the coefficients
of the representation Py of 9(®). The contraction of Py to @&, being
& faithful representation of ®&;, we know that the funetions ay(®),
Iy(@) form a system of generators of the representative ring of Gh.
It follows that we have, for 0@,

Jual@) = Fu( - -, a5(0), @), - - ) N\
where cach Fy is & polynomial with complex eoeﬂicients.'.\ ‘We have
Fu( o, 2(@,), #{@0), + + *) = du (Gg@j\

On the other hand, we have xy(a,) = f(Z, 7; P@(cz.)fﬁi"f‘ all ee@® and
ri{@) = o(f(4, 7; Py)) for all &e®.. Bince & ={d% we have Z;(a)
= &(f(, §; Pa)). Since @ is a homomorphizm, the relations

Fu( o JG, §; Po)s JG, 35 P +) = by

imply Fu(- - -, 25(0), T4(0), © - ) = éi}which proves that
1 40
yA(@)y~t = ARt {az®))
R . ..*. * - *

Ny

and hence that A containg€he unit representation of &,. I’roposition 1
ig thereby proved. Y

In the case w. he?‘ﬁ\@ has at least one faithful representation, the
representation Pg(which was used in the proof is faithful. It then
follows Jmmediately from Proposition 1 that ®, is isomorphic with &
{as a topolog‘wal group).

Propofition 2. If the compact Lic group & admils & Jaithful repre-
sentazwn, the group MUG) is homeomorphic to the product of ® and R,
wh@re R 18 the dimension of ©.

e make use again of the representation Py of & which was intro-
\duced in the proof of Lemma 1. Under our assumptions, Py is faith-
ful. The corresponding representation Py of (&) maps topologieally
this last group onto a linear group $, and maps the cloments of ®,
onto unitary matrices. Furthermore, the argument used in the proof
of Lemma 1 shows immediately that the following statcments hold
true: if 7 is any matrix in §, then 7* also belongs to ©: if r is unitary,
then + represents an element of ;. On the other hand, it follows
from Proposition 3, §VIII, p. 198 that $ is an algebraic group. Propo-
sition 2 will therefore follow from
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Lemma 2. Let $ be an algebraic subgroup of GL{(d; C) such that
the condition 1€ implies 7*¢9. If v is any matriz in ©, and if 7 = op
is the representation of v as the product of an unitary malriz o and o
postiive definite hermitian matrix p, then we have 029, p2®. The group §
s homeomorphic to the product of $ O U(d) and R™, where n s the
dimension of § 7 U{d),

We can find a matrix ¢ such that p1 = ppu! is a diagonal matrix;
the coefficients of the main diagonal of u are positive real numbers.
We may write py, = exp ay, with \

a 0..... 0 "\:\
ar= [0 a....0 O
..........
0 0 ..... ag P
"
where a1, * - - , aq are real numbers. \Y;

The group £, = pHe! is obviously alsg\algebmic. We have
p? = (r*)"1e9, whence p2eP; and p*e$, fordyéry integer k.

Tet F(- - - z; + - -) = 0 be any one‘iﬁx\the algebraic equations
which define $,, and let F'(x,, - - -, zalbe the polynomisl deduced
from F by the substitution x; — 0 itd{%'f, zx — 2. We have

(1) Fr‘(g%‘", - ’ezku) :‘0:::';(;17 _ 0’ i]: i2: P )

We shall deduce from (1) thas F/{ets, + - -, ") is identically zero.
- In faet, we would othg“r\}ise have F/{gtn, - - - | &%) = Zhuetin,

where each 4, is a_reahexponent and bn 5 0. Assuming that 4,
- P wehs.h:ould have

O ] > [ B ibnetit
for |k| sufficiéntly large and & of the same sign as A;: this would be in
contradicti§n"with (1).
In‘.‘p‘ért-icular, we have Fi(ew, - -+, ¢ =0, whence p.g9,
pE@}f&ﬁ’d ¢ = 7p— &P, which proves the first part of Lemma 2.
ince ¢ and p are continuous functions of r, $ is clearly homeo-
morphic with the product of $ 7 U(d) and of the set H of all positive
definite hermitian matrices contained in $. The proof of the first
part of Lemma 2 shows that a matrix pH is of the form exp o, where «
is a hermitian matrix which has the property that exp tat$ for all
real or complex . The matrix A/ —1 « is skew hermitian, whence
expt+/—1aeH O Uld)if tisreal. This means that 4/ —1 e belongs
to the Lie algebra g of § M U(d). Conversely, let 8 be any matrix
such that v/ —1 Beg; then, we have exp 8¢9 when ¢ is purely imag-
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inary. LetG(- - - z; - - -) = 0 be any one of the algebraic equations
which define §. If we substitute for the z;'s the cocfficients of
exp i3, G{- - + @y : - -) becomes an entire function of ¢ which vanishes

identically when ¢ is purely imaginary. This function therefore van-
ishes identically, whence exp /88$. The matrix 8 is hormitian because
v/ =18 belongs to the Lie algebra of U(d); it follows thai exp I8
is positive definite hermitian if ¢ is real, whence exp 18cH. We know
that the mapping /=18 —exp 8 maps g topologically onto H,
which proves the second part of Lemma 2. Q

It follows immediately from Proposition 2 that M(®) i'sQ group
of dimension 2n. Moreover, it follows from the proof 'of Tetma 2
that g and 4/ —1g have no ¢lement = 0 in common.  Therelore,
6 + +/—1 ¢ is a vector space of dimension 27, Singe ib is obviously
contained in the Lie algebrs of 9, it must coinéide with it. This
proves: $
Proposition 3. Let & be a compact Lie grovp which admtts a faithful
representation, and let {My, - -+ | M,} be d Base of the Lie algebra of .
Let {M;, M, = Ziendd, be the corre.gp’éﬁfing equations of structure.
The Lie algebra of the associated alfehraic group MUY has a base
{ My, - -, M, M}, - , M} Suehi that

(M, M| = T gl (M) M| = — ZucenM,
[My, M) = ol

()" 8X. EXAMPLES

We shall determﬁ} the associated algebraic groups of the linear
groups which wegauhtroduced in Chapter 1.

The associgted algebraic group of U(n) is obviously GL{n, C).

Let IIS',,{L(}W‘ consider the group SU(n). The identity mapping
Po of STNn) into GL(n, C) is a representation of St (n). It follows
from‘Pr%OSition. 3, §VII, p. 190 that the coefficients of Py 4 Po

for:n\':al'system of generators of the representative ring o of SU(n).
ApESU ™), we have Po(s) = (Pofo)) and Pole)] = 1; it follows that
the coefficients of Py(s) can be expressed as polynomials in the coeffi-
cients of Pg{e). Therefore, the coefficients of P, alone form a
gystem of generators of 0. Let Py be the representation of the associ-
ated algebraic group of SU(n) which extends P, and let £ be the
image of the associated group under P, Since ST7(n) C SL(n, (),
it follows from Proposition 3, §VIII, p. 108 that § ( SL{n, ), We
have dim § = 2 (dim SU(n)) = 2(n? — 1) = dim SL{n, ), which
proves that © is the component of the unit matrix in SLi{n, C}. By
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Lemms 2, §IX, p. 2M, we know that SL{n, € is homeomorphic
?J\rith (S8U(n)) X RB*-1; therefore we have $ = SL{n, C). Since P,
15 a faithful representation, we may say that the associated group of
SU(n) is SL{n, C).

. The identity mapping of O(n) into GL(n, ) is a faithlul representa-
tion of ({n) by real matrices. Ii follows that the coefficients of a
matrix in O(n), considered as functions on O(n), form a system of
generators of the representative ring of Ofn). Tt ean then he seen
easily that the associated algebraic group of O(n) is O(n, C) and.that
the associated algebraic group of 80(n) is O(n, C) ™ 8L{n, C), which

is a subgroup of index 2 in O(x, C). (\)
The group Sp(n) is the group of unitary matrices ¢ of deigree 2n
such that ‘eJo = J, where “~

7
S

{0 e A
J - (_en 0) '»‘}\

€: being the unit matrix of degree n. It follows ‘that the condition
¢e8p(n} implies E[2 = 1. On the other l;g@d,\\\'c know that Sp(n)
is connected; it follows immediatcly that’seSp(n) implies E[ =L
Following the same procedure as in théease of SU(n), we sce that the
coefficients of a matrix of Sp(n}, censidered as functions on Sp(n),
form a system of generators of the Tepresentative ring of Sp(n). The
associated algebraie group of §p{h) may therefore be identified with a
subgroup of Sp(n, €). If ris\a matrix in Sp(n, €), we have trJ7 = J,
whence (F)*J*7* = Jh b J* = Jand ()% = {{7*), whence 7*¢Sp(n,
). By Lemma 2, ‘§‘]3(, p. 201 we conclude that the asscciated
algebraie group of»Sp(n) is Spin, €). At the same time we prove
that Sp(n, €) isthetheomorphic with Sp(r) X R+ which proves, in
particular, th@"&gp(n, C) is connected and simply connected.

’%XI THE MAIN APPROXIMATION THEOREM

We\’:héve already seen (Lemma 1, §VII, p. 190) that, if & is a
¢ ﬁl‘}éaét group of matrices, then any continuous funetion on & may
be Wpproximated as closely as we wish by a function belonging to the
representative ring o of @.  As we announced carlier, this result holds
also for arbitrary compact Lie groups. We shall now prove this
fundamental result, which is due to H. Peter and H. Weyl.

Theorem 3 (Peter-Weyl). Lel & be a compact Lie group and let f
be a continuous function on &, If a is any number > 0, there extsts
in the representative ring of @ @ function g such that |f(o) — g(o}| La
Jor all @,
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We shall denote by § the space of all complex valued confinuous
functions on ®. Since ® is compact, every function fef is bounded.
We ghall denote the maximum of the absolute value of f by M(f).
We have elearly

M(af) = |a|M{f) (22C)
M({f+g) € M(f) + Mg

We can make § a metric space in which the distance of two funetions
fand gis M{(f —g). A subset ® of § is said to be bounded if there
exists a number A such that M (f) € 4 for all fz.

The oscillaiion of a function fef on & subset K of & mfthe least
uppet bound of the numbers |f(s) — f(7)] for all ¢, reE.0)

A subset @ of § is said to be a set of equzcontmuou‘s functmn-, if, for
every number ¢ > (, there exists a neighbourhopdhF, of the ncutral
element in & such that, f being any function'ir}\fb and ¢ being any
element of @, the oscillation of f on the set #U%1s £ .

Lemma 1. Let D be a bounded set of eybitontinuous functions, and
let a be @ number > 0. If a subset &y of\tb 8 such that M{(f — ¢) > a
for all pairs (f, ) of distinct element.s‘of ®,, we may conclude thal $, 1s
finite.

Lot A be & number such that ‘Ia’(f) A for all fed, H s42@, the
get of numbers f(¢q) {for all fcfb) is contained in the compact rcgion
of the complex z-plane which'is defined by the inequality jz| € 4. It
follows immediately tha\t there exists a finite subset ¢,, of & with the
following propertyg; b every fe® there corresponds a function figd.,
sueh that the me\uallty |f(ea) — fileo)| < a/6 holds true. Let o
be any point, of dol/es6; we have

[flo) — fx(\%“< lfe) — floo)| + Ifloe) = fileo)| + 1filon) — f2(0)] < .

O’n \he other hand, to every pair (f, ¢) of functions of &, we may
was%oma‘re a point ¢ = o(f, ¢) such that If{e) — g(e)| 2 2. Tf ¥u
c?;)ntams #t funetions, there cannot exist more than m? pairs (f, gred,
X &, such that o(f, g)sesl/,s, because otherwise there would exist
one of these pairs, say (f, g), such that [f(o) — fi(e)! < a/2, |9()
— f1{e)] < a/2 with the same f1&¢,,, and this would imply (o) — glo)
< @

Since ® is compact, it can be covered by a finite number of sets
Vi -+, Vx each of which is of the form ool/,,5. Since there are
only a ﬁmte number of pairs (f, gied, X &, such that o(f, g)eVi
(1 £ ¢ £ N), we conclude that &, is finite.
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Lemma 2. If a sequence of functions belongs to a bounded set of
equicontinuous functions, it s possible to extract from i a subsequence
which converges uniformly on ®.

In fact, let x be any integer > 0. We can construct a finite
subset ®, of & with the following properties: 1} if f, g&®,, we have
M(f — ¢) 2 1/u; 2) if f is any function in $, there exists a function
ge®, such that M{f — ¢) < 1/w.! Let now {fx} be any sequence of
functions in ® We denote by M, the set of all integers > 0. Weshall
define by induction on g an infinite subset M, of Ma Suppose t-ha.t\
u 2 0 and that M, has alrcady been defined. Then, since &, ls Rnitey
there exists a function g,418®.41 such that the inequality M (fu i)
< 1/(x 4 1) holds for infinitely many integers me3,; Muys wilkbethe
set of these integers. We select in each M, an integer m, 2y Since
M, ( M,for v > p, we have M{(fn, — g < 1/u, M(fj.,,;:— g < 1/u,
whenee M (fm, — fmu) < 2/p. Tt follows ilmediatelgthat the sequence
{fm,) converges uniformly on &. ¢

We shall now introduce in §§ an operation \:vl{ich is a generalization
of the scalar multiplication defined in Chapter 1, $III, p. 9. It f
and g are any functions in &, we set AN /

£ = faf@Wte) do
where the integral is the invariant jinﬁegrai defined in §VLLI, Chapter V,
p. 167, normalized by the coddition Jglde = 1.

The following properties are obvious:

1) For g fixed, fy\‘ss linear in f, le. we have (efi + a:f2) - ¢
= a(f1 q) + ag(sz',_fz)gz_tﬁ_azEC).

2) We have /= fy¢

3). If f # Opwe have f-f > 0.

We shal( Jét ||f]] denote the number (f-f}. If @ b are any
real numbers, we have {(af + bg) - {of + bg) = a*(f - [y + 2abN(F - ¢)
+ b3gg), where  indicates the taking of the real part. Since this
e [:m;assion is 2 0 for all real a, b, we have

RE < UNg-g e %G - @l < - gl
Let & be s real number such that exp (VoiNGg =I1fg. I
we replace § by (exp +/—1#)f inour inequality, we get the Schwarz

i Let f, be any function in % Ufy - frare already defined, and if there
exists a function F such that M(f —f 2 lpfer 1§14 £, we scl_ect suE-h a
function and eall it frya. This inductive proeess cannot be continued indefinitely
{because of Lemma 1). If it stops with f,, we may take &, = {fu. - - A
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tnequalsfy:

1f - gl < NIflHlgll

On the other hand, we have |[f + g2 =F-F+ 2R +9-9¢
< 11f1 + 211 Tgll + gl = A1+ lgll?, whieh proves Minborwsi’s
tnequalily:

17 -+ gll < 1Al + ligil.

Now, iet k(a, 7} be a complex valued continuous function defined

in @ X & which satisfies the condition N
Elo, ) = k{7, a). ’ \' \))

If f is any funetion in §, we shall denote by Kf the fun@tlon which is

defined by the formula

Kf(a) = Jokle, r)f(r) dr

We shall prove that Kf belongs to §. Lej;@.’be any number > 0.
There exists a neighbourhood U, of the yé\illtral element ¢ in & such
that the inequality |k{ep, v) — ko, 7)|.< ¢ holds whenever pelU;. In
fact, there would otherwisc exist threg sequences {om), (o), () of
elements in & such that limu ., .pa" \\ & [E(@mpm ™) — klom ™) 2 @
Since ® is eompaet, the sequences form) a0d () would have subsequences
converging respectively to eléments #, = and we would have jk(ee, 7)
— k(o, 7} 2 a, whieh is iIonqsible. If p belongs to U,, we have

M IKfen) — BN < afolfe) 4 = a1 1) < alf

which proves the. c@ntmmty of the function Kf. Moreover, if 4
denotes an uppér¥ound for the values taken by kon @ X @, we also

have "\'\
@ O K6 < Afelfe) dr < Al

T heSQQt'ﬁ o inequalifies prove
“\bemma 3. The operator K maps the set of all funclions Jei§ such
E&u A1l € 1 ondo @ bounded set of equicontinuous functions.
Another property of the operator K is expressed in the formula

3) Ki-g=f-Kg
which i3 entirely similar to the formula which expresses the hermitian
character of a matrix. In order to prove (3), we observe that
Kf -9 = JoUwklo, i) dr)glo) do = [gxsk(o, 7)f(r)g(e) do dr
= Jo/)(Juk(r, 0)j(o) da) dr = [+ Kg

o~’

m\‘
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We shall say that a number ¢ is an “eigenvalue” of the function &
if there exists in § a function ¢ » 0 such that Ko = ¢ Any such
function is called an eigenfunction belonging to the value e, Our
next step will be to prove the existence of eigenvalues.

It follows immediately from (2) that IKf|i & A'lf. Hence the
numbers ||Kf}| remain bounded when f varies in the set of funetions
fsuch that [|f]] = 1. We shall denote by }|k![ the least upper bound
of IKf|| for [[f]] = 1. Ttis clear that ||KS| € ['E|| {|f]] for any function
JeE. Q)

Lemma 4. The number ||k|| is the least upper bound of the galhes
taken by Kf - f when [[f]] = 1. R\

If |ifil =1, we have \Kf-fi < [|IKAII'fE € 1%l InSorder to
prove the converse, let ¢ be the least upper bound of |Kf - 'for |[f]| = 1.
It follows immediately that [Kf-f| < ¢|!'f]\% for any,f> Let f and ¢
be two functions such that |[fi| = 1, |'g|| = 1. We"h;\u-'e

Ef+g-G+a)=Kf f+Eg-g+Kf g KXKy-f
= Kf-f+ Kg 4 ga‘r\ﬁ(m- 0) S dllf + g

(KS—g) G- =Kf-f+ Eg-g={QNEf-g) 2 —c|lf — gl
whenee 4R (XS - g) < e(llf + gl + [R50 = 2e(lfi12 + [lgli?) = 4¢
If we assume Kf ## 0 and take g &\JKf|[7'Kf, we obtain ||Kf)] £ e.
This last, inequalify holds also if Kf = (. We have therefore proved
that A5 = e S

Lemma 6. One at least(of the numbers |k|l, —|[k|| is an cigenvalue
of the function k. y \’

We can find a sequénce {fn) of functions in § such that ||fu]| = 1
and such that Kf.» ¥ tends towards one of the numbers |&||, —|/k|.
We set ¢ = e Kfm * fu-

Replacing\if}lécess&ry the sequence (f») by a subsequence, we may
assume witheut loss of generality that the sequence (Kfn) converges
uniforml’j on & to a function ¢, which clearly belongs to § {eof. Lemmas
2, 3)g§We therefore have limn_, . M(p — KEfn) = 0.

“W& observe now that the operation f - g is continuous with respect
to ¥he metric defined by M. In fact, we have [[f|* = [af(+)](x)
dr € (M())?, whenee [(fi — f2) - (g — g2 € 1 — £l llgr — gall €
M(fy — f2)M (g — g2)-

Sinee Kfn - fu is real, we have

WK — efull® = [[KLa[? + Sllfnll* — 26(KS - f)

and the right side tends to ||¢|/? — ¢? as m increases indefinitely. It
follows that [|¢|| = ||, whence ¢ =% 0 provided ¢ # 0. On the other
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hand, we have |'Kf.l[? € |[k]|2 € ¢*, and therefore the right side
of our formula is € 22 — 2¢(Kfn - fu), a quantity which tends to
0 with 1/m. We conclude that lim., . |Kfx — ¢fwl| = 0 and there-
fore also limm.. » |[K(Kfn) — eKfn]] = 0. Since lim,., o [|[Kfn — ¢
= () we have lim,._, . M(K(Kf.) — K¢) = 0, whenee

HK(F - cﬁ&“i! = lim’“—’-‘ﬂ ||K(Kfm) - CKfm” =0

which proves that Ko = ce. J.emma 5 is therefore proved if ¢ # 0.
If ¢ = 0, we have ||k|| = 0, Kf = 0 for every f and Lemma. 5 is then
trivial. \

We shall say that two functions ¢ and ¢ belonging to ‘2\9 orthog-
onal to each other if ¢ - ¢ is equal to 0. £\

Let & be the set of eigenfunctions of & which Leldhg to cigen-
values = 0. We can find a subset ®* of & with the‘tol‘lou ing proper-
ties: a) if ¢ and ¢ are in ®* and ¢ = ¢, then :p\ﬂ’/ = (; h) we have
llg|] = 1 for every ¢ed*;c) ®* is maximal with réspect to the proper-
ties a), b) (i.c. it is impossible to imbed @* m,a properly larger subset
of & for which a), b) hold). \

Lemma 6. Let a bea number > O {Dhere are only a finite number of
funetions in ®@* which belong fo ezqem}alues grealer than a in absolule
value. Q

In fact, let ¢, - - -, %’b’e functions of ®* guch that K¢; = e,
el >a (1£4¢% h). We”ﬁave Kip: — @) = ewps — ¢;0; whencee
1Ko — @)!|2 = e + C\> 2¢%. We know that M(K(e: — @) 2
1K (e — @)l > a \f Lemma 6 then follows from Lemmas 1
and 3. N

Lemma 7. .A-ﬂ:y funelion f in ® 45 a linear combination of a finite
number of fugpelions in d*.

Let c"l\lé\ﬂle eigenvalue to which f belongs, and le,t @1t T, P
be the\mnchonq of ®* belonging to e. Weset f/ = f — = (f o).
bmqe.kf = pof, Kg; = egr, we have also Kff = cf’. Moreover, 7 18
ortl}(.igonal to @1, © * *, en  Let ¥ be any function of ®* distinet from

\m, - -+, i then ¢ belongs to an cigenvalue d = ¢. We have

= 1/4(f" K¢) = 1/d(Kf" - ¢} = e/d{f" -¥) whenee f ¢ = 0.

We see that f' is orthogonal to every funection in &%, If we had

J' # 0, the set composed of ®* and of the function ||f'|]2f" would still

bave the properties a), b) above, which is impossible. Therefore
f' = 0, which proves Lemma, 7.

It follows from Lemma 6 that ®* is a countable set. 'We arrange
the elements of * in a sequence (¢,) (1 £ p < o or 1 € p € o

t This follows immediately from Zorn’s lemma,
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according as to whether ®* is infinite or finite), and we denote by ¢,
the ecigenvalue to which ¢, belongs. We observe that, if Z.e.e, s a
finite linear combination of functions of &%, we have ||Se.p|| = el

Lemma 8 {Bessel's Inequality). If f is any function in §, the
sertes Zu|f - @ul* i convergent, and s sum is € ||f |2

We set g = f — Zugilf " @u)eu, Wwhere 7 is any positive integer if
$* js infinite, and is at most equal to the numbe: of clements of &*
if #*is [inite. We have g;- ¢, = 0 (1 £ p £ ), from which it follows
casily that \

W1 = Hgdl® 4+ ZuglF e eul? O\

'\
which proves Lemma 8. \.

Lemma 9. If fef, the series KT+ ¢.) v, converges um_fmmly on &
to the funetion Kf. 4
We have "‘\
: : Ko, - ©
ZUKS  oudou = ZHES ¢ . = Z’(f -RV-’A-)

= zg(f;bpp Kow = K(SHS - oo

K

whence, making use of (2}, '
M(ZES - o) € AlIZA)e) = A o)

and it follows from Lemma 8 t-hjdt:tfhe right side tends to 0 as ¢ and
inerease indefinitely (in thgeease where &* is infinite), Thercfore
the given series docs corgv?rge uniformly. There remains to prove
that its sum is Kf. &~

We set kalo, 7)’s Ao, ) — IZhceeule)@(r). Bince cach e, i
real, we have k. {o9) = k.(r, o). Tf ¢ is any funetion in §§, we have
Ka = Ky — Z%{ - o)eu (where K, is defined for k. as K was
defined fors~k). It follows t‘nat K,,\,f/ on = Ko = (¥ o))
=y K%i«"cﬂ(tp ) = 0if 1 € p € n. In particular, if ¢ is an
mgenfum,rwn of K belonging to an eigenvalue d #£ 0, we have
¥ pith = =0 (1 € ps€n), Ky = Kb = d¥ und  is an cigenfunction
oK belonging to d. It follows that ¢ is a linear combination of the
functions ¢, for which e, = d. Wehavey = Z,.d.e.and b, = ¢ - o,
whenee b, = 0if » € #n. Let a be a number > 0;if » is choosen to be
larger than all indices u for which |e. 2 @ (there are ouly a finite
number of these indices), we may conclude that [d| < @, whence, by
Lemma 5, ||K.|| € a. It follows that lima, . [[Kf|] = 0 Gf &* is
infinite; if ®* is finite, K.f = 01f n is the number of elements in ®*).
But K,.f Kf — Zay_l(Kf @) Puy whence ”Kf — ZuKS- (!aF)‘JDM“ =0,
which completes the proof of Lemma 9.
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Lemma 10. If the function k(e, 7) is of fhe form x(e7'r), where
x 15 a continuous function on @ such that x{e7') = %{g), then every
eigenfunciion of k belonging to an ecigenvalue ¢ # 0 i3 a representative
funection on &,

If fis any function in § and pe®, we denocte by f* the function
defined by fele) = flpe). Assume that f is an eigenfunction of %
belonging to an eigenvalue ¢ # 0. We have

oft(e) = fexlo ™o 0)f(r) ds ,
= fox(e™ ) (o) dr' = [ex(e™ el dr KO

N

in virtue of the invariant character of our integration pmgg\éé‘r,\ IHence
§# is again an eigenfunction belonging to ¢. We may agswumne that the
funections of the set ®* which belong to ¢ are ¢y, « - -",:gB.sfs. By Lemma
7, we have \\

¢ = 2lalee gal) =W e

v =
Let P{o) be the matrix (gi(s)). Since ¢f*22(0f")" we have P(pio2)
= P{p1)P(p2). On the other hand, sincgﬁa‘e 1 ¢; Is continuous on the
compact group ®, it is also uniformly kéntinuous on ®; it follows that,
for every a > 0, there exists a geigﬁbourhood U, of the neutral
element e in & such that M (¢} %) < a whenever pel,. It follows
that lim,.. ggle) = lim,s &% ¢y = 8; = gi;(). The mapping »
— P(p} of & into the set of“matrices of degree h is therefore a con-
tinuous representation of ‘¢, and the functions g; are representative
functions. But we havg ¢i(p) = ¢i(e) = Zi gi(p)i(e), which shows
that each ¢; is li}iéw se a representative function, Lemma 10 is
thereby proved. . \J
Lemma 1¥N\%Let ¥ be a continuous Junction on & such that x(e~1)
= x{e), agdf};‘el a be @ number > 0. Then there exists a representative
Junction g of © such that M(x — g} < a.~
Let'& be the operator associated with the function k(s 7) = %(o—'1).
We-defermine a neighbourhood ¥ of the neutral element such that the
iequality [%(e='7) — (%] < ¢/2 holds for all 2. We can
}onstruct a, ¢continuous funetion f;, with real non negative values such
that fi(e) # 0, file} = 0 if & does not belong to V. The number
i = [efi(r) dr is  0; we set f = J-Y, whence [gf(z) dr = 1. We
ave

xo) = KI@)| = [%6™) ~ Kf@)| = o) — 2ot dr| <

Making uses of Lemmas 9 and 10, we see that there exists a representa-
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tive function ¢ such that M (Kf — ¢} < a/2. Tt {ollows that M {x — ¢)
< @, which proves Lemma 11.

Let nm_vf be an arbitrary continuous function on &,  We set x, (o)
= flo) + fls), x0) = /=1 (flo) — f(&)), whenee x(e™)) = %(o)
(¢=1, 2) and f =30 — v —1x2). Since x; and x» may be
approximated as closely as we want by representalive funetions, the
same holds for f.  Theorem 3 is therebyy proved.

§XII. FIRST APPLICATIONS OF THE MAIN APPROXIMATION
THEOREM Q)

Theorem 4. A compact Lie group admils af least ong{farthful
representation. o\

Let ® be a compact Lie group.  Making use of Proposition 6, §VII,
p. 193, we see that, in order to prove that & admits @ ffithkul represen-
tation, it is sufficient to prove that, if ¢ is any clefoént of & distinet
from the neutral element e, there exists a représontation P of & such
that P{s) is not a unit matrix, Let f be a censthuons funclion on &
such that f(e) # f(e). Since f can be ap sigximated s closely as we
want by representative functions, we sed{bdt there exists a representa-
tive funetion which takes distinet valGed at ¢ and ¢ and our assertion
follows immediately from this fac{s.’j;

Propositien 1. if Hisa clased subgroup of a compact Lie group G,
any irreducible representation oo is contained in the trace on § of some
representation of @,

This follows at onceifrbnl Theoremn 4 above and {from Proposition 4,
§VII, p. 191 L\

Theorem 5 (Theorem of Tannaka), Let R be the sel of all repre-
sentutions of @ ch-mf)a.ct Lic group ®.  Let &, be the sct of all representa-
tions ¢ of"%\;eﬁhich satisfy the supplementary conditions cPy = (P,
where R\a'\'s.,\a}iy element of R and where P 4s the imaginary conjugale
repregept}ttian of P, If we define a multiplication tn &y by the formula
16 P = £1P)E (P, &1 becomes a group. Let a be any element of &
‘anidefine the representation o of N by £.(P) = P{e). Then the mapping
&= 1, is an isomorphism of O with .

This follows immediately from Proposition 1, §1X, p. 199 and from
Theorem 4 above.

Corollary. Let © be a compact Lie group of dimension n.  Then the
associated algebraic group of @ is homeomorphic to the product of ©

and R*.
This follows immediately from Proposition 2, §IX, p. 200 and

from Theorem 4 above.

y.
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Proposition 2. Lel f be a continuous funclion on a compact Lie
group ® such that f(a) = flrer2) for any o, 78&. If @ is any number
> 0, there exists o function fi which is a linear combination of ehar-
aclers of irreducible representations of @ such that |f(o) — fi(e)| € e
Jor all se®. '

Let P be any irreducible unitary representation of &; denote by
7.:(s) the coefficlents of P(v). We have

gii(ror™1) = Zpgal(r)gule)gu(r")

and gy(v—1) = gu{r). Making use of the orthogonality relations,\wc

obtain O\
[ogalrorydr =0 & dixj O

Jogi(or) dr = d='x(o)

where d and x are respectively the degree and thé eharacter of the
representation P. \%

We know from the general approximation, thadrem that there exists
a function fy of the representative ring of @ {ich that |fla) — fale)| € a
for all oe®. It follows that |[ef(s% 1) dr — [@folrer) d7| € a.
Since flo) = f(ror 1), we have [@ jig?af;l] dr = f(s). On the other
hand, fo 1s a linear combination of.’coeﬂicients of irreducible unitary
representations of @ and thercforg*the function f1(s) = [@f2(ror) dr
is a linear combination of chargtters of irreducible representations of
®. Proposition 2 is there{)_gr proved.,

¢\, J
§XIIE COMPACT ABELIAN GROUPS

Proposition 1,.\4" compact connected abelian Lie group ® of dimen-
sion n 18 tsomorphic {(as a topological group) with the n-dimensional
torus T, \\"

In fagt{let- g be the Lie algebra of ®. Sinee @ is abelian, we have
[X, Y} %\0 for any elements X and ¥ of g. It follows that g coincides
With{ihé Lie algebra of R*. Bince B* is simply connected, the universal

overing groupof @is . Butitis wellknown that a compact connected
group which is locally isomorphic with R* is isomorphic with 7.

Let z be a real number modulo 1 (i.e. a residue class of the additive
group of real numbers modulo the group of integers), and let « be a
real number whose residue class modulo 1 i3 r. Since the value of
exp (2r v/ —1 z) depends only upon g, we may set

exp (2r 4/ —11) = exp 2r v/ —12)
The mapping £ — exp (2r v/ —11) is clearly s representation of 7%



§XT1I1] THE ABELIAN CASE 213

' Any element o£T™ may be represented in the form (g, - -+, 1.),
with 2271 (1 £ ¢ € n). If we set Pio) = exp (2r /=1 1), each
P; is a representation of T Moreover, P=P,+ - -+ +P. is a

faithful representation of T~ If my, + - -, m, are any integers, the
mapping ¢ — exp {2r v/ —1 Zimez;) is a representation of 7 which
we shall denote by Pm - - < P, We have P77 =P (1 €¢ € n);if
my ¢+ *, M, are all positive, Pf* - - - P+ is the Kronecker product
of m; times the representation Py, - -+ -, m, times the representation
Pr.

We ha,ve_l5 =Pyt 4 - - - 4 P;Y; by Proposition 3, §VIL, p. 19[},\
the sct [P, P} contains sufficiently many representations of ¢ Tt
follows that every irreducible representation of 7™ is confathed in
some representation obtained by Kronecker multiplication of P and
P, each taken a suitable number of times. Tt follows,filﬁ‘inediatcly
that every irreducible representation of 7" is of the fokrPy - - - P
with suitable integers my, - * * , Mn \/

In the case of 7™, the irreducible representatiohs are of degree 1.
Therefore, the Kronecker product of two i eilticible representations
is likewise irreducible. It follows that the'ipreducihle representations
form a group under the operation of  Jrénecker mulliplication, the
inverse operation in this group bgi;l@ “the passage to the imaginary
conjugate representation. rl‘hi:?\gr(),’u’p % iz the product of # times the
additive group of integers by“itself. It is easy to see directly that T°
is isomorphic with the gronp of all irreducible unitary representa-
tions of M: this is a pgmrti&}ar casc of the famous duality theoremn of
Pontrjagin. This fapt\c\an alse be deduced from Theorem 5, §XIT,
p. 211; the latter, theprem is thercfore a far reaching generalization
of Pontrjagin’s fhéerem.

Let us findlly” observe that the application to T of the theorem
of Peter~¥¥{}}§ields the following well known approximatiqn thcurer'n:

Let fuy) + + - ;@) Dea conlinuous function of n reajl variables which
is periodic of period 1 with respect to each ‘van‘able. Gwejﬂ, any niumber

'3~;0,’there exists o irigonemetric polynomial {L.e. a function of the form
g, « 0, T = Selmy, © © ° , Ma) EXD (2r 4/ —~1 Zimzg)) such that
flxs, = ) — glay, * ot 5 Tl £ g for all values of 2y, + =+ | T






INDEX

Adjoint represcutation, 123
alternate functions, 141
analytic groups, 100
associated algebraie group, 197
automorphism group, 135

Bessel’'s ineqguality, 208

canonical eoordinates, 118
Cartan, differential forms of, 146
character of o representation, 186
Clifford numbers, 61

compact anbelian groups, 212
coordinate systems, 70
countability axioms, 84

covering group, 53

covering spaces, 40

derived algebra, 125

derived group, 123

differentials, 78

exponential mapping, 115 \
exponential of a matrix, 5 Ny

Grassmann algebra, 145

hermitian produet, 8 2\ \\

homogeneous apacesy29/

homomorphism A" J
analytic, 11V

locel, 48 ()"
0 f‘\\‘..

ideals afilie algebras, 114
iJ”Qin”i’bésimal trapsformations, 82
{ntegfation of differential forms, 161
infariant integration on & group, 167
involutive digtribution, 86
isomorphism, local, 37

Kroneeker product, 179

Lie algebras, 101
Lie groups, 129

compact, representations of, 171 {f.

.:’ &
oy

linear groups
gencral, 3, 101
special, 4, 119

manifolds
analytic, 68-98
integral, §7
oriented, 158
products of, 75
matrices, 2 A
hermitian, 11
skew-hermitian, 8 \J
skew-symmetric, 8 4 x:’"
unitary, 4, 10 ‘ é
Maurer-Cartan, fgriQé‘of . 152
monodromy, phtieiple of, 46
multilinear fuhdtions, 139

N\

2\
nrthoggpﬁ'ls:roups, 4, 32, 36, 60, 65, 203
comples, 4
_spegdial, 119, 203

*

f:,‘Pe“ter-Weyl, theorern of, 203
Piaffian forms, 146

Poincaré group, 52
quaternions, 16
representative ving, 188

Schur's lemma, 182

spinor group, 65

star representation, 178

submanifolds, 85

symplectic geomelry, 18

gymplectie groups, 21, 33, 36, 60, 203
complex, 23, 203

tangent veetors, 76

Tannakn, theorem of, 211

topological groups, 26
eonnectedness of, 33
Jocal characterization of, 28
products of, 27

unitary groups, 4, 33, 36, 80, 119, 202
special, 119, 203

217



	Page 1�
	Page 2�
	Page 3�
	Page 4�
	Page 5�
	Page 6�
	Page 7�
	Page 8�
	Page 9�
	Page 10�
	Page 11�
	Page 12�
	Page 13�
	Page 14�
	Page 15�
	Page 16�
	Page 17�
	Page 18�
	Page 19�
	Page 20�
	Page 21�
	Page 22�
	Page 23�
	Page 24�
	Page 25�
	Page 26�
	Page 27�
	Page 28�
	Page 29�
	Page 30�
	Page 31�
	Page 32�
	Page 33�
	Page 34�
	Page 35�
	Page 36�
	Page 37�
	Page 38�
	Page 39�
	Page 40�
	Page 41�
	Page 42�
	Page 43�
	Page 44�
	Page 45�
	Page 46�
	Page 47�
	Page 48�
	Page 49�
	Page 50�
	Page 51�
	Page 52�
	Page 53�
	Page 54�
	Page 55�
	Page 56�
	Page 57�
	Page 58�
	Page 59�
	Page 60�
	Page 61�
	Page 62�
	Page 63�
	Page 64�
	Page 65�
	Page 66�
	Page 67�
	Page 68�
	Page 69�
	Page 70�
	Page 71�
	Page 72�
	Page 73�
	Page 74�
	Page 75�
	Page 76�
	Page 77�
	Page 78�
	Page 79�
	Page 80�
	Page 81�
	Page 82�
	Page 83�
	Page 84�
	Page 85�
	Page 86�
	Page 87�
	Page 88�
	Page 89�
	Page 90�
	Page 91�
	Page 92�
	Page 93�
	Page 94�
	Page 95�
	Page 96�
	Page 97�
	Page 98�
	Page 99�
	Page 100�
	Page 101�
	Page 102�
	Page 103�
	Page 104�
	Page 105�
	Page 106�
	Page 107�
	Page 108�
	Page 109�
	Page 110�
	Page 111�
	Page 112�
	Page 113�
	Page 114�
	Page 115�
	Page 116�
	Page 117�
	Page 118�
	Page 119�
	Page 120�
	Page 121�
	Page 122�
	Page 123�
	Page 124�
	Page 125�
	Page 126�
	Page 127�
	Page 128�
	Page 129�
	Page 130�
	Page 131�
	Page 132�
	Page 133�
	Page 134�
	Page 135�
	Page 136�
	Page 137�
	Page 138�
	Page 139�
	Page 140�
	Page 141�
	Page 142�
	Page 143�
	Page 144�
	Page 145�
	Page 146�
	Page 147�
	Page 148�
	Page 149�
	Page 150�
	Page 151�
	Page 152�
	Page 153�
	Page 154�
	Page 155�
	Page 156�
	Page 157�
	Page 158�
	Page 159�
	Page 160�
	Page 161�
	Page 162�
	Page 163�
	Page 164�
	Page 165�
	Page 166�
	Page 167�
	Page 168�
	Page 169�
	Page 170�
	Page 171�
	Page 172�
	Page 173�
	Page 174�
	Page 175�
	Page 176�
	Page 177�
	Page 178�
	Page 179�
	Page 180�
	Page 181�
	Page 182�
	Page 183�
	Page 184�
	Page 185�
	Page 186�
	Page 187�
	Page 188�
	Page 189�
	Page 190�
	Page 191�
	Page 192�
	Page 193�
	Page 194�
	Page 195�
	Page 196�
	Page 197�
	Page 198�
	Page 199�
	Page 200�
	Page 201�
	Page 202�
	Page 203�
	Page 204�
	Page 205�
	Page 206�
	Page 207�
	Page 208�
	Page 209�
	Page 210�
	Page 211�
	Page 212�
	Page 213�
	Page 214�
	Page 215�
	Page 216�
	Page 217�
	Page 218�
	Page 219�
	Page 220�
	Page 221�
	Page 222�
	Page 223�
	Page 224�
	Page 225�
	Page 226�

